-
- Hossein Mohammadian Foroushani, Ali Hamzehloo, Atul Kumar, Yasheng Chen, Laura Heitsch, Agnieszka Slowik, Daniel Strbian, Jin-Moo Lee, Daniel S Marcus, and Rajat Dhar.
- Department of Electrical and Systems Engineering, Washington University in St. Louis, Saint Louis, USA.
- Neurocrit Care. 2020 Dec 1; 33 (3): 785-792.
IntroductionMalignant cerebral edema develops in a small subset of patients with hemispheric strokes, precipitating deterioration and death if decompressive hemicraniectomy (DHC) is not performed in a timely manner. Predicting which stroke patients will develop malignant edema is imprecise based on clinical data alone. Head computed tomography (CT) imaging is often performed at baseline and 24-h. We determined the incremental value of incorporating imaging-derived features from serial CTs to enhance prediction of malignant edema.MethodsWe identified hemispheric stroke patients at three sites with NIHSS ≥ 7 who had baseline as well as 24-h clinical and CT imaging data. We extracted quantitative imaging features from baseline and follow-up CTs, including CSF volume, intracranial reserve (CSF/cranial volume), as well as midline shift (MLS) and infarct-related hypodensity volume. Potentially lethal malignant edema was defined as requiring DHC or dying with MLS over 5-mm. We built machine-learning models using logistic regression first with baseline data and then adding 24-h data including reduction in CSF volume (ΔCSF). Model performance was evaluated with cross-validation using metrics of recall (sensitivity), precision (predictive value), as well as area under receiver-operating-characteristic and precision-recall curves (AUROC, AUPRC).ResultsTwenty of 361 patients (6%) died or underwent DHC. Baseline clinical variables alone had recall of 60% with low precision (7%), AUROC 0.59, AUPRC 0.15. Adding baseline intracranial reserve improved recall to 80% and AUROC to 0.82 but precision remained only 16% (AUPRC 0.28). Incorporating ΔCSF improved AUPRC to 0.53 (AUROC 0.91) while all imaging features further improved prediction (recall 90%, precision 38%, AUROC 0.96, AUPRC 0.66).ConclusionIncorporating quantitative CT-based imaging features from baseline and 24-h CT enhances identification of patients with malignant edema needing DHC. Further refinements and external validation of such imaging-based machine-learning models are required.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.