• J Manag Care Spec Pharm · Nov 2018

    Using Previous Medication Adherence to Predict Future Adherence.

    • Hiraku Kumamaru, Moa P Lee, Niteesh K Choudhry, Yaa-Hui Dong, Alexis A Krumme, Nazleen Khan, Gregory Brill, Shun Kohsaka, Hiroaki Miyata, Sebastian Schneeweiss, and Joshua J Gagne.
    • 1 Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, and Department of Healthcare Quality Assessment, Graduate School of Medicine, The University of Tokyo, Japan.
    • J Manag Care Spec Pharm. 2018 Nov 1; 24 (11): 1146-1155.

    BackgroundMedication nonadherence is a major public health problem. Identification of patients who are likely to be and not be adherent can guide targeted interventions and improve the design of comparative-effectiveness studies.ObjectiveTo evaluate multiple measures of patient previous medication adherence in light of predicting future statin adherence in a large U.S. administrative claims database.MethodsWe identified a cohort of patients newly initiating statins and measured their previous adherence to other chronic preventive medications during a 365-day baseline period, using metrics such as proportion of days covered (PDC), lack of second fills, and number of dispensations. We measured adherence to statins during the year after initiation, defining high adherence as PDC ≥ 80%. We built logistic regression models from different combinations of baseline variables and previous adherence measures to predict high adherence in a random 50% sample and tested their discrimination using concordance statistics (c-statistics) in the other 50%. We also assessed the association between previous adherence and subsequent statin high adherence by fitting a modified Poisson model from all relevant covariates plus previous mean PDC categorized as < 25%, 25%-79%, and ≥ 80%.ResultsAmong 89,490 statin initiators identified, a prediction model including only demographic variables had a c-statistic of 0.578 (95% CI = 0.573-0.584). A model combining information on patient comorbidities, health care services utilization, and medication use resulted in a c-statistic of 0.665 (95% CI = 0.659-0.670). Models with each of the previous medication adherence measures as the only explanatory variable yielded c-statistics ranging between 0.533 (95% CI = 0.529-0.537) for lack of second fill and 0.666 (95% CI = 0.661-0.671) for maximum PDC. Adding mean PDC to the combined model yielded a c-statistic of 0.695 (95% CI = 0.690-0.700). Given a sensitivity of 75%, the predictor improved the specificity from 47.7% to 53.6%. Patients with previous mean PDC < 25% were half as likely to show high adherence to statins compared with those with previous mean PDC ≥ 80% (risk ratio = 0.49, 95% CI = 0.46-0.50).ConclusionsIncluding measures of previous medication adherence yields better prediction of future statin adherence than usual baseline clinical measures that are typically used in claims-based studies.DisclosuresThis study was funded by the Patient-Centered Outcomes Research Institute (ME-1309-06274). Kumamaru, Kohsaka, and Miyata are affiliated with the Department of Healthcare Quality Assessment at the University of Tokyo, which is a social collaboration department supported by National Clinical Database. The department was formerly supported by endowments from Johnson & Johnson K.K., Nipro, Teijin Pharma, Kaketsuken K.K., St. Jude Medical Japan, Novartis Pharma K.K., Taiho Pharmaceutical, W. L. Gore & Associates, Olympus Corporation, and Chugai Pharmaceutical. Gagne has received grants from Novartis Pharmaceuticals and Eli Lilly and Company to the Brigham and Women's Hospital for unrelated work. He is a consultant to Aetion, a software company, and to Optum. Choudhry has received grants from the National Heart, Lung, and Blood Institute, PhRMA Foundation, Merck, Sanofi, AstraZeneca, CVS, and MediSafe. Schneeweiss is consultant to WHISCON and Aetion, a software manufacturer of which he also owns equity. He is principal investigator of investigator-initiated grants to the Brigham and Women's Hospital from Bayer, Genentech, and Boehringer Ingelheim unrelated to the topic of this study. He does not receive personal fees from biopharmaceutical companies. No potential conflict of interest was reported by the other authors.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…