-
Am. J. Physiol. Heart Circ. Physiol. · Jul 2019
Microvascular ion transport through endothelial glycocalyx layer: new mechanism and improved Starling principle.
- Xi Zhuo Jiang, Yiannis Ventikos, and Kai H Luo.
- Department of Mechanical Engineering, University College London , London , United Kingdom.
- Am. J. Physiol. Heart Circ. Physiol. 2019 Jul 1; 317 (1): H104-H113.
AbstractIon transport through the endothelial glycocalyx layer is closely associated with many vascular diseases. Clarification of ion behaviors around the endothelial glycocalyx layer under varying circumstances will benefit pathologies related to cardiovascular and renal diseases. In this research, a series of large-scale molecular dynamics simulations are conducted to study the response of ion transport to the changing blood flow velocity and the shedding of endothelial glycocalyx sugar chains. Results indicate that blood flow promotes the outward Na+ transport from the near-membrane region to the lumen via the endothelial glycocalyx layer. Scrutiny of sugar-chain dynamics and their interactions with Na+ suggests that corner conformation of endothelial glycocalyx sugar chains confines the movement of the Na+, whereas stretching conformation facilitates the motion of Na+ ions. The flow impact on ion transport of Na+ is nonlinear. Based on the findings, the Starling principle and its revised version, which are prevailingly used to predict the ion transport of the endothelial glycocalyx layer, are further improved. An estimation based on the further revised Starling principle indicates that physiological flow changes the osmotic part of transendothelial water flux by 8% compared with the stationary situation. NEW & NOTEWORTHY The biophysical roles of negatively charged oligosaccharides of the endothelial glycocalyx have gained increasing attention due to their importance in regulating microvascular fluid exchange. The Starling principle and its revisions are at the heart of the understanding of fluid homeostasis in the periphery. Here, the blood flow changes the conformations of glycocalyx sugar chains, thereby influencing availability of Na+ for transport. Based on the findings, the Starling principle and its revision are further improved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.