• J Chin Med Assoc · Nov 2020

    A Statistical Predictive Model Consistent Within a 5-Year Follow-up Period for Patients with Acute Heart Failure.

    • Chao-Yu Guo, Chien-Hui Chan, Yu-Chin Chou, Shih-Hsien Sung, and Hao-Min Cheng.
    • Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.
    • J Chin Med Assoc. 2020 Nov 1; 83 (11): 1008-1013.

    BackgroundAcute heart failure (AHF) is a major and rapidly growing health problem responsible for millions of hospitalizations annually. Due to a high proportion of in-hospital mortality and postdischarge rehospitalization and mortality, a prompt strategy for risk stratification and subsequently tailored therapy is desirable to help improve clinical outcomes. The AHEAD (A: atrial fibrillation; H: hemoglobin; E: elderly; A: abnormal renal parameters; D: diabetes mellitus) and AHEAD-U (A: atrial fibrillation; H: hemoglobin; E: elderly; A: abnormal renal parameters; D: diabetes mellitus, U: uric acid) are popular prognostic scoring systems. However, only a specific follow-up period is considered in these systems, and whether their predictive capability is still accurate in a significantly shorter or longer follow-up period is not known.MethodsIn this research, we adapted extensive statistical approaches based on the Cox model to explore consistent risk factors in various follow-up durations. Results showed that six factors, namely, hemoglobin level, age, sodium level, blood urea nitrogen level, atrial fibrillation, and high-density lipoprotein level could be used to establish a new prognostic model, which was referred to as HANBAH. For a simple clinical application, the HANBAH scoring system, with scores from 0 to 6, was developed using several statistical models.ResultsBased on an evaluation using the conventional statistical approaches, such as the Akaike information criterion, concordance statistic, and Cox area under the curve, the HANBAH scoring system consistently outperformed other strategies in predicting short- and long-term mortality. Notably, an independent replication study also revealed similar results. In addition, a modern machine learning technique using the support vector machine confirmed its superior performance.ConclusionThe use of the HANBAH scoring system, which is a clinically friendly tool, was proposed, and its efficacy in predicting the mortality rates of patients with AHF regardless of the follow-up duration was independently validated.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.