• European radiology · Oct 2019

    Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT.

    • Jeong Hoon Lee, Eun Ju Ha, and Ju Han Kim.
    • Division of Biomedical Informatics, Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine, Seoul, 110799, Republic of Korea.
    • Eur Radiol. 2019 Oct 1; 29 (10): 5452-5457.

    PurposeTo develop a deep learning-based computer-aided diagnosis (CAD) system for use in the CT diagnosis of cervical lymph node metastasis (LNM) in patients with thyroid cancer.MethodsA total of 995 axial CT images that included benign (n = 647) and malignant (n = 348) lymph nodes were collected from 202 patients with thyroid cancer who underwent CT for surgical planning between July 2017 and January 2018. The datasets were randomly split into training (79.0%), validation (10.5%), and test (10.5%) datasets. Eight deep convolutional neural network (CNN) models were used to classify the images into metastatic or benign lymph nodes. Pretrained networks were used on the ImageNet and the best-performing algorithm was selected. Class-specific discriminative regions were visualized with attention heatmap using a global average pooling method.ResultsThe area under the ROC curve (AUROC) for the tested algorithms ranged from 0.909 to 0.953. The sensitivity, specificity, and accuracy of the best-performing algorithm were all 90.4%, respectively. Attention heatmap highlighted important subregions for further clinical review.ConclusionA deep learning-based CAD system could accurately classify cervical LNM in patients with thyroid cancer on preoperative CT with an AUROC of 0.953. Whether this approach has clinical utility will require evaluation in a clinical setting.Key Points• A deep learning-based CAD system could accurately classify cervical lymph node metastasis. The AUROC for the eight tested algorithms ranged from 0.909 to 0.953. • Of the eight models, the ResNet50 algorithm was the best-performing model for the validation dataset with 0.953 AUROC. The sensitivity, specificity, and accuracy of the ResNet50 model were all 90.4%, respectively, in the test dataset. • Based on its high accuracy of 90.4%, we consider that this model may be useful in a clinical setting to detect LNM on preoperative CT in patients with thyroid cancer.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…