• Sci. Total Environ. · Jun 2019

    Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms.

    • Amiya Gayen, Hamid Reza Pourghasemi, Sunil Saha, Saskia Keesstra, and Shibiao Bai.
    • Department of Geography, University of Gour Banga, Malda, West Bengal, India.
    • Sci. Total Environ. 2019 Jun 10; 668: 124-138.

    AbstractGully erosion is one of the most effective drivers of sediment removal and runoff from highland areas to valley floors and stable channels, where continued off-site effects of water erosion occur. Gully initiation and development is a natural process that greatly impacts natural resources, agricultural activities, and environmental quality as it promotes land and water degradation, ecosystem disruption, and intensification of hazards. In this research, an attempt is made to produce gully erosion susceptibility maps for the management of hazard-prone areas in the Pathro River Basin of India using four well-known machine learning models, namely, multivariate additive regression splines (MARS), flexible discriminant analysis (FDA), random forest (RF), and support vector machine (SVM). To support this effort, observations from 174 gully erosion sites were made using field surveys. Of the 174 observations, 70% were randomly split into a training data set to build susceptibility models and the remaining 30% were used to validate the newly built models. Twelve gully erosion conditioning factors were assessed to find the areas most susceptible to gully erosion. The predisposing factors were slope gradient, altitude, plan curvature, slope aspect, land use, slope length (LS), topographical wetness index (TWI), drainage density, soil type, distance from the river, distance from the lineament, and distance from the road. Finally, the results from the four applied models were validated with the help of ROC (Receiver Operating Characteristics) curves. The AUC value for the RF model was calculated to be 96.2%, whereas for those for the FDA, MARS, and SVM models were 84.2%, 91.4%, and 88.3%, respectively. The AUC results indicated that the random forest model had the highest prediction accuracy, followed by the MARS, SVM, and FDA models. However, it could be concluded that all the machine learning models performed well according to their prediction accuracy. The produced GESMs can be very useful for land managers and policy makers as they can be used to initiate remedial measures and erosion hazard mitigation in prioritized areas.Copyright © 2019 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…