• J Eval Clin Pract · Oct 2020

    Agent-based modelling for SARS-CoV-2 epidemic prediction and intervention assessment: A methodological appraisal.

    • Mariusz Maziarz and Martin Zach.
    • Interdisciplinary Centre for Ethics, Jagiellonian University, Kraków, Poland.
    • J Eval Clin Pract. 2020 Oct 1; 26 (5): 135213601352-1360.

    BackgroundOur purpose is to assess epidemiological agent-based models-or ABMs-of the SARS-CoV-2 pandemic methodologically. The rapid spread of the outbreak requires fast-paced decision-making regarding mitigation measures. However, the evidence for the efficacy of non-pharmaceutical interventions such as imposed social distancing and school or workplace closures is scarce: few observational studies use quasi-experimental research designs, and conducting randomized controlled trials seems infeasible. Additionally, evidence from the previous coronavirus outbreaks of SARS and MERS lacks external validity, given the significant differences in contagiousness of those pathogens relative to SARS-CoV-2. To address the pressing policy questions that have emerged as a result of COVID-19, epidemiologists have produced numerous models that range from simple compartmental models to highly advanced agent-based models. These models have been criticized for involving simplifications and lacking empirical support for their assumptions.MethodsTo address these voices and methodologically appraise epidemiological ABMs, we consider AceMod (the model of the COVID-19 epidemic in Australia) as a case study of the modelling practice.ResultsOur example shows that, although epidemiological ABMs involve simplifications of various sorts, the key characteristics of social interactions and the spread of SARS-CoV-2 are represented sufficiently accurately. This is the case because these modellers treat empirical results as inputs for constructing modelling assumptions and rules that the agents follow; and they use calibration to assert the adequacy to benchmark variables.ConclusionsGiven this, we claim that the best epidemiological ABMs are models of actual mechanisms and deliver both mechanistic and difference-making evidence. Consequently, they may also adequately describe the effects of possible interventions. Finally, we discuss the limitations of ABMs and put forward policy recommendations.© 2020 John Wiley & Sons Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.