• J. Nucl. Med. · Feb 2014

    Comparative Study

    Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions.

    • Matthias Eiber, Toshiki Takei, Michael Souvatzoglou, Marius E Mayerhoefer, Sebastian Fürst, Florian C Gaertner, Denys J Loeffelbein, Ernst J Rummeny, Sibylle I Ziegler, Markus Schwaiger, and Ambros J Beer.
    • Department of Radiology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany.
    • J. Nucl. Med. 2014 Feb 1; 55 (2): 191-7.

    UnlabelledBecause of its higher soft-tissue contrast, whole-body integrated PET/MR offers potential advantages over PET/CT for evaluation of bone lesions. However, unlike PET/CT, PET/MR ignores the contribution of cortical bone in the attenuation map. Thus, the aims of this study were to evaluate the diagnostic performance of whole-body integrated (18)F-FDG PET/MR specifically for bone lesions and to analyze differences in standardized uptake value (SUV) quantification between PET/MR and PET/CT.MethodsOne hundred nineteen patients with (18)F-FDG-avid primary malignancies underwent a single-injection, dual-imaging protocol using (18)F-FDG on a PET/CT scanner and a subsequent PET/MR scan with a T1-weighted volumetric interpolated breath-hold examination (VIBE) Dixon sequence for attenuation correction and an unenhanced coronal T1-weighted turbo spin-echo (TSE) sequence for bone analysis. Three sets of images (CT with PET [from PET/CT; set A], T1-weighted VIBE Dixon with PET [set B], and T1-weighted TSE with PET [both from PET/MR; set C]) were analyzed. Two readers rated every lesion using a 4-point scale for lesion conspicuity on PET, a 4-point scale for anatomic allocation of PET-positive lesions, and a 5-point scale for the nature of every lesion based on its appearance on morphologic imaging and uptake on PET. For all lesions and for representative regions of normal bone, SUV analysis was performed for PET/MR and PET/CT.ResultsIn total, 98 bone lesions were identified in 33 of 119 patients, and 630 regions of normal bone were analyzed. Visual lesion conspicuity on PET was comparable for PET/CT (mean rating, 2.82 ± 0.45) and PET/MR (2.75 ± 0.51; P = 0.3095). Anatomic delineation and allocation of suggestive lesions was significantly superior with T1-weighted TSE MRI (mean rating, 2.84 ± 0.42) compared with CT (2.57 ± 0.54, P = 0.0001) or T1-weighted VIBE Dixon MRI (2.57 ± 0.54, P = 0.0002). No significant difference in correct classification of malignant bone lesions was found among sets A (85/90), B (84/90), and C (86/90). For bone lesions and regions of normal bone, a highly significant correlation existed between the mean SUVs for PET/MR and PET/CT (R = 0.950 and 0.917, respectively, each P < 0.001). However, substantially lower mean SUVs were found for PET/MR than for PET/CT both for bone lesions (12.4% ± 15.5%) and for regions of normal bone (30.1% ± 27.5%).ConclusionCompared with PET/CT, fully integrated whole-body (18)F-FDG PET/MR is technically and clinically robust for evaluation of bone lesions despite differences in attenuation correction. PET/MR, including diagnostic T1-weighted TSE sequences, was superior to PET/CT for anatomic delineation and allocation of bone lesions. This finding might be of clinical relevance in selected cases--for example, primary bone tumors, early bone marrow infiltration, and tumors with low uptake on PET. Thus, a diagnostic T1-weighted TSE sequence is recommended as a routine protocol for oncologic PET/MR.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.