• Br J Anaesth · Oct 2020

    Antinociceptive, reinforcing, and pruritic effects of the G-protein signalling-biased mu opioid receptor agonist PZM21 in non-human primates.

    • Huiping Ding, Norikazu Kiguchi, David A Perrey, Thuy Nguyen, Paul W Czoty, Fang-Chi Hsu, Yanan Zhang, and Mei-Chuan Ko.
    • Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
    • Br J Anaesth. 2020 Oct 1; 125 (4): 596-604.

    BackgroundA novel G-protein signalling-biased mu opioid peptide (MOP) receptor agonist, PZM21, was recently developed with a distinct chemical structure. It is a potent Gi/o activator with minimal β-arrestin-2 recruitment. Despite intriguing activity in rodent models, PZM21 function in non-human primates is unknown. The aim of this study was to investigate PZM21 actions after systemic or intrathecal administration in primates.MethodsAntinociceptive, reinforcing, and pruritic effects of PZM21 were compared with those of the clinically used MOP receptor agonists oxycodone and morphine in assays of acute thermal nociception, capsaicin-induced thermal allodynia, itch scratching responses, and drug self-administration in gonadally intact, adult rhesus macaques (10 males, six females).ResultsAfter subcutaneous administration, PZM21 (1.0-6.0 mg kg-1) and oxycodone (0.1-0.6 mg kg-1) induced dose-dependent thermal antinociceptive effects (P<0.05); PZM21 was 10 times less potent than oxycodone. PZM21 exerted oxycodone-like reinforcing effects and strength as determined by two operant schedules of reinforcement in the intravenous drug self-administration assay. After intrathecal administration, PZM21 (0.03-0.3 mg) dose-dependently attenuated capsaicin-induced thermal allodynia (P<0.05). Although intrathecal PZM21 and morphine induced MOP receptor-mediated antiallodynic effects, both compounds induced robust, long-lasting itch scratching.ConclusionsPZM21 induced antinociceptive, reinforcing, and pruritic effects similar to clinically used MOP receptor agonists in primates. Although structure-based discovery of PZM21 identified a novel avenue for studying G-protein signalling-biased ligands, biasing an agonist towards G-protein signalling pathways did not determine or alter reinforcing (i.e. abuse potential) or pruritic effects of MOP receptor agonists in a translationally relevant non-human primate model.Copyright © 2020 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.