• Experimental neurology · Sep 2016

    Subthalamic deep brain stimulation alters neuronal firing in canonical pain nuclei in a 6-hydroxydopamine lesioned rat model of Parkinson's disease.

    • Lucy E Gee, Ian Walling, Adolfo Ramirez-Zamora, Damian S Shin, and Julie G Pilitsis.
    • Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Neurosurgery, Albany Medical Center, Albany, NY, United States.
    • Exp. Neurol. 2016 Sep 1; 283 (Pt A): 298-307.

    IntroductionChronic pain is one of the most common non-motor symptoms of Parkinson's disease (PD) affecting up to 85% of patients. Previous studies have established that reduced mechanical and thermal thresholds occur in both idiopathic PD patients and animal models of PD, suggesting that changes may occur in sensory processing circuits. Improvements in sensory thresholds are achieved using subthalamic nucleus (STN) deep brain stimulation (DBS), however the mechanism by which this occurs remains unresolved.Materials And MethodsWe examined unilateral medial forebrain bundle 6-hydroxydopamine (6OHDA) rat model of PD to determine whether STN DBS alters neuronal firing rates in brain areas involved in ascending and descending pain processing. Specifically, single unit in vivo recordings were conducted in the anterior cingulate cortex (ACC), the periaqueductal grey (PAG), and the ventral posteriolateral nucleus of the thalamus (VPL), before, during and after stimulation was applied to the STN at 50 or 150Hz.ResultsSham and 6OHDA lesioned animals have similar neuronal firing activity in the VPL, ACC and PAG before stimulation was applied (p>0.05). In 6OHDA lesioned rats, both low frequency stimulation (LFS) (p<0.01) and high frequency stimulation (HFS) (p<0.05) attenuated firing frequency in the ACC. In shams, only LFS decreased firing frequency. A subset of neurons in the PAG was significantly attenuated in both sham and 6OHDA lesioned animals during HFS and LFS (p<0.05), while another subset of PAG neuronal activity significantly increased in 6OHDA lesioned rats during HFS (p<0.05). Finally, low or high frequency STN DBS did not alter neuronal firing frequencies in the VPL.ConclusionsOur results suggest that STN DBS alters neuronal firing in descending pain circuits. We hypothesize that STN DBS attenuates excitatory projections from the ACC to the PAG in 6OHDA lesioned rats. Following this, neurons in the PAG respond by either increasing (during HFS only) or decreasing (during both LFS and HFS), which may modulate descending facilitation or inhibition at the level of the spinal cord. Future work should address specific neuronal changes in the ACC and PAG that occur in a freely moving parkinsonian animal during a pain stimulus treated with STN DBS.Copyright © 2016 Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.