-
Clin. Orthop. Relat. Res. · Jan 2016
Comparative StudySurface Damage Is Not Reduced With Highly Crosslinked Polyethylene Tibial Inserts at Short-term.
- Tong Liu, Christina Esposito, Marcella Elpers, and Timothy Wright.
- Department of Biomechanics, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA. liut@hss.edu.
- Clin. Orthop. Relat. Res. 2016 Jan 1; 474 (1): 107-16.
BackgroundHighly crosslinked ultrahigh-molecular-weight polyethylene (XLPE) has been shown to reduce wear in hip arthroplasty, but the advantages over conventional polyethylene (PE) in total knee arthroplasty (TKA), if any, remain unclear.Questions/PurposesDo differences exist in (1) surface damage as measured by damage score and percent area affected; and (2) extent and location of dimensional changes between XLPE and conventional PE observed on retrieved TKA tibial inserts?MethodsIn this study of components retrieved at the time of revision surgery, we matched 44 XLPE to 44 conventional PE inserts from four manufacturers; the matching approach considered implant design (exact match), insert size (exact match), and length of implantation (matched ± 6 months). Surface damage on the articular surfaces was subjectively graded and digitally mapped to determine the percent damaged area of each damage mode. Three-dimensional changes that had occurred as a result of implantation were determined by comparing laser scans of the retrieved inserts with size-matched pristine inserts.ResultsThe differences of damage scores and percent damaged areas between the matched XLPE and conventional PE inserts were not large enough to be clinically significant with low corresponding levels of statistical significance (scores: 42 ± 13; 95% confidence interval [CI], 38-46 versus 45 ± 13; 95% CI, 41-49; p = 0.4; percent areas: 54% ± 38%; 95% CI, 44%-64% versus 54% ± 32%; 95% CI, 42%-65%; p = 0.9). However, XLPE inserts showed greater articular surface dimensional changes with high significance (root mean square of the distance: 0.16 ± 0.06 mm; 95% CI, 0.13-0.18 mm versus 0.14 ± 0.05 mm; 95% CI, 0.11-0.16 mm; p = 0.03). Within the same design, deviation patterns were consistent between the two materials; however, as expected, the location of the dimensional changes differed among designs: the negative deviations on the plateaus were centrally located in Zimmer PS inserts, were located on the perimeter in Smith & Nephew PS inserts, and were across the entire surface in DePuy PS inserts.ConclusionsWe found no difference in surface damage between matched XLPE and conventional PE inserts of the same designs. However, increased dimensional changes in TKAs with XLPE may reflect larger contact areas and potentially explain improved performance of XLPE in published simulator studies.Clinical RelevanceThe lack of meaningful differences between the two polyethylene materials suggests caution in adopting a new, more expensive bearing material over another material that has a long track record of excellent behavior. A possible advantage is the greater dimensional changes, which could be the result of the lower creep resistance of XLPE, but this advantage awaits long-term results.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.