• Brain connectivity · Nov 2016

    Changes in Functional Connectivity of Default Mode Network with Auditory and Right Frontoparietal Networks in Poststroke Aphasia.

    • Vladislav Balaev, Alexey Petrushevsky, and Olga Martynova.
    • 1 Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences , Moscow, Russian Federation.
    • Brain Connect. 2016 Nov 1; 6 (9): 714-723.

    AbstractTo evaluate the influence of poststroke aphasia on the functional association of widespread large-scale neuronal networks, we analyzed functional connectivity (FC) between resting-state brain networks (RSNs) in aphasic patients (N = 15) and in healthy volunteers (N = 17) of the same age using resting-state functional connectivity magnetic resonance imaging. As a result, six RSNs were isolated and cross-correlation matrices were computed for their time courses. Aphasic patients showed decreased correlations between posterior part of the default mode (pDMN) and both auditory (AUD) and right frontoparietal (RFP) networks. Additionally, we calculated regions of interest-based FC (ROI-FC), gray and white matter volumes in the ROIs overlapping with pDMN, AUD, and RFP. ROI-FC analysis showed decreased FC between the right pars triangularis and both right middle frontal and right superior frontal gyri. The decreased pDMN-RFP connectivity in patients is likely to reflect changes in FC of these nodes. The lesion in the regions overlapping with pDMN and AUD networks leads to the significantly decreased pDMN-AUD connectivity. Our results suggest that abnormal FC in stroke patients may reflect the impairment of activity not only in the regions directly affected by stroke lesion in the left hemisphere but also in the homotopic regions of the intact right hemisphere. The increase of gray and white matter volume in the right supramarginal gyrus, the functional hub of pDMN, AUD, and RFP networks, correlated with less speech impairment. This increase might reflect a right hemisphere neuroplasticity process to compensate the impaired function of the homotopic region of left frontoparietal network (LFP), pDMN, and AUD in the left hemisphere. The presented results contribute to the hypothesized compensative role of the transfer of attention and executive functions from the damaged areas in the left hemisphere to the right homotopic areas, accompanied by more preserved language skills at the chronic stroke stage.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.