• IEEE Trans Biomed Eng · Apr 2012

    Application of kernel principal component analysis for single-lead-ECG-derived respiration.

    • Devy Widjaja, Carolina Varon, Alexander Caicedo Dorado, Johan A K Suykens, and Sabine Van Huffel.
    • Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium. devy.widjaja@esat.kuleuven.be
    • IEEE Trans Biomed Eng. 2012 Apr 1; 59 (4): 1169-76.

    AbstractRecent studies show that principal component analysis (PCA) of heartbeats is a well-performing method to derive a respiratory signal from ECGs. In this study, an improved ECG-derived respiration (EDR) algorithm based on kernel PCA (kPCA) is presented. KPCA can be seen as a generalization of PCA where nonlinearities in the data are taken into account by nonlinear mapping of the data, using a kernel function, into a higher dimensional space in which PCA is carried out. The comparison of several kernels suggests that a radial basis function (RBF) kernel performs the best when deriving EDR signals. Further improvement is carried out by tuning the parameter σ(2) that represents the variance of the RBF kernel. The performance of kPCA is assessed by comparing the EDR signals to a reference respiratory signal, using the correlation and the magnitude squared coherence coefficients. When comparing the coefficients of the tuned EDR signals using kPCA to EDR signals obtained using PCA and the algorithm based on the R peak amplitude, statistically significant differences are found in the correlation and coherence coefficients (both p<0.0001), showing that kPCA outperforms PCA and R peak amplitude in the extraction of a respiratory signal from single-lead ECGs.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…