• Chem. Biol. Interact. · Dec 1996

    Formation of reactive oxygen species and DNA strand breakage during interaction of chromium (III) and hydrogen peroxide in vitro: evidence for a chromium (III)-mediated Fenton-like reaction.

    • T C Tsou and J L Yang.
    • Department of Life Sciences, National Tsing Hua University, Hsinehu, Taiwan.
    • Chem. Biol. Interact. 1996 Dec 20; 102 (3): 133-53.

    AbstractThe role of reactive oxygen species in causing DNA damage through interaction of chromium (III) and hydrogen peroxide was examined using plasmid relaxation assay and EPR spectroscopy. Marked DNA strand breakage was induced by CrCl3 plus H2O2 in a phosphate buffer at pH 6-8.9; whereas, only slight DNA strand breakage was observed during similar treatment at pH less than 4. DNA breakage also increased as the reaction temperature and Cr(III)/H2O2 concentrations increased. Control experiments with Cr(III) or H2O2 alone did not cause DNA breakage. Sodium azide, D-mannitol, Tris-HCl, or catalase completely inhibited Cr(III)/H2O2-induced DNA breakage, but superoxide dismutase did not. The D2O enhancing effect on DNA breaks was not observed. Cr(III) pre-incubated with a 30-fold molar excess of EDTA did not cause any significant DNA breakage in the presence of H2O2. In a phosphate buffer containing Cr(III) and H2O2, singlet oxygen and hydroxyl radicals were detected using EPR spectrometry with the spin traps 2,2,6,6-tetramethyl-4-piperidone and 5,5-dimethyl-1-pyrroline 1-oxide (DMPO), respectively. DMPO/.OH adducts and DNA breakage induced by Cr(III)/H2O2 were markedly higher than those induced by Cr(VI)/H2O2. Furthermore, ascorbate decreased Cr(III)/H2O2-induced DNA breakage. EPR studies revealed that ascorbate (mole ratio to Cr(III) = 0.5:1) attenuated the DMPO/.OH signal generated by Cr(III)/H2O2/DMPO, but a Cr(V) signal and ascorbate radicals were detected. NADPH, GSH, and GSSG also decreased DMPO/.OH generated by Cr(III)/H2O2/DMPO; however, they were less efficient than ascorbate and no Cr(V) signals were detected. This study shows that Cr(III)/H2O2 generates oxidative damage to DNA through a Fenton-like reaction: Cr(III) + H2O2-->Cr(IV) + .OH + OH.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…