• Spine deformity · Sep 2018

    Contribution of Lateral Decubitus Positioning and Cable Tensioning on Immediate Correction in Anterior Vertebral Body Growth Modulation.

    • Nikita Cobetto, Carl-Eric Aubin, and Stefan Parent.
    • Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Downtown Station, Montreal, Quebec H3C 3A7, Canada; Research Center, Sainte-Justine University Hospital Center, 3175 Côte-Sainte-Catherine Road, Montreal, Quebec H3T 1C5, Canada.
    • Spine Deform. 2018 Sep 1; 6 (5): 507-513.

    Study DesignComputational simulation of lateral decubitus and anterior vertebral body growth modulation (AVBGM).ObjectivesTo biomechanically evaluate lateral decubitus and cable tensioning contributions on intra- and postoperative correction.Summary Of Background DataAVBGM is a compression-based fusionless procedure to treat progressive pediatric scoliosis. During surgery, the patient is positioned in lateral decubitus, which reduces spinal curves. The deformity is further corrected with the application of compression by cable tensioning. Predicting postoperative correction following AVBGM installation remains difficult.MethodsTwenty pediatric scoliotic patients instrumented with AVBGM were recruited. Three-dimensional (3D) reconstructions obtained from calibrated biplanar radiographs were used to generate a personalized finite element model. Intraoperative lateral decubitus position and installation of AVBGM were simulated to evaluate the intraoperative positioning and cable tensioning (100 / 150 / 200 N) relative contribution on intra- and postoperative correction.ResultsAverage Cobb angles prior to surgery were 56° ± 10° (thoracic) and 38° ± 8° (lumbar). Simulated presenting growth plate's stresses were of 0.86 MPa (concave side) and 0.02 MPa (convex side). The simulated lateral decubitus reduced Cobb angles on average by 30% (thoracic) and 18% (lumbar). Cable tensioning supplementary contribution on intraoperative spinal correction was of 15%, 18%, and 24% (thoracic) for 100, 150, and 200 N, respectively. Simulated Cobb angles for the postoperative standing position were 39°, 37°, and 33° (thoracic) and 30°, 29°, and 28° (lumbar), respectively, whereas growth plate's stresses were of 0.54, 0.53, and 0.51 MPa (concave side) and 0.36, 0.53, and 0.68 MPa (convex side) for the three tensions.ConclusionThe majority of curve correction was achieved by lateral decubitus positioning. The main role of the cable was to apply supplemental periapical correction and secure the intraoperative positioning correction. Increases in cable tensioning furthermore rebalanced initially asymmetric compressive stresses. This study could help improve the design of AVBGM by understanding the contributions of the surgical procedure components to the overall correction achieved.Level Of EvidenceLevel III.Copyright © 2018 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…