• Crit Care Resusc · Dec 2002

    Monitoring tissue gas tensions in critical illness.

    • B Venkatesh and T J Morgan.
    • Department of Intensive Care, University of Western Queensland, Royal Brisbane Hospital, Brisbane, Queensland. bala_venkatesh@health.qld.gov.au
    • Crit Care Resusc. 2002 Dec 1; 4 (4): 291-300.

    ObjectiveTo review the technology and the role of monitoring tissue oxygenation in critical illness.Data SourcesArticles and published peer review abstracts on monitoring tissue oxygenation.Summary Of ReviewMiniaturised optodes and electrode systems are the commonly used technology for measurement of tissue gas tensions. Reductions in tissue perfusion frequently leads to a decrease in tissue PO2 and an increase in tissue PCO2 which has been confirmed in a number of animal and human trials in hypovolaemic shock. Monitoring tissue oxygenation has also enabled the delineation of cytopathic hypoxia, which is one of the important pathophysiological mechanisms of sepsis. Although these devices have improved our understanding of pathophysiological mechanisms of critical illness, at a clinical level titrating oxygen therapy to tissue oxygen tensions has only been shown to be useful in patients with impaired wound healing. A number of questions remain unanswered in relation to the monitoring of tissue oxygenation in critical illness. These include establishing normal values of PO2 and PCO2 in humans at the various tissue beds, establishing dysoxic thresholds for the various tissues, identifying optimal sites for monitoring and improving measurement accuracy. Furthermore, the nature of microcirculatory blood flow and tissue gas exchange in critical illness is complex and incompletely understood, limiting our ability to interpret changes from the baseline. Knowing critical tissue PO2 thresholds will provide the clinician with practical resuscitation endpoints in hypoxia and shock, and may even modify the practice of 'permissive hypoxia' in severe respiratory failure. These questions need answers in the years to come.ConclusionsMonitoring of tissue oxygenation is largely a research tool. For its application in the critically ill patient there needs to be a greater understanding of normal values of PO2 and PCO2 at the various tissue beds, dysoxic thresholds for the various tissues and optimal sites for monitoring.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.