• European radiology · Aug 2019

    Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging.

    • Yae Won Park, Jongmin Oh, Seng Chan You, Kyunghwa Han, Sung Soo Ahn, Yoon Seong Choi, Jong Hee Chang, Se Hoon Kim, and Seung-Koo Lee.
    • Department of Radiology, Ewha Womans University College of Medicine, Seoul, South Korea.
    • Eur Radiol. 2019 Aug 1; 29 (8): 4068-4076.

    ObjectivesPreoperative, noninvasive prediction of the meningioma grade is important because it influences the treatment strategy. The purpose of this study was to evaluate the role of radiomics features of postcontrast T1-weighted images (T1C), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) maps, based on the entire tumor volume, in the differentiation of grades and histological subtypes of meningiomas.MethodsOne hundred thirty-six patients with pathologically diagnosed meningiomas (108 low-grade [benign], 28 high-grade [atypical and anaplastic]), who underwent T1C and diffusion tensor imaging, were included in the discovery set. The T1C image, ADC, and FA maps were analyzed to derive volume-based data of the entire tumor. Radiomics features were correlated with meningioma grades and histological subtypes. Various machine learning classifiers were trained to build classification models to predict meningioma grades. We tested the model in a validation set (58 patients; 46 low-grade; 12 high-grade).ResultsThe machine learning classifiers showed variable performances depending on the machine learning algorithms. The best classification system for the prediction of meningioma grades had an area under the curve of 0.86 (95% confidence interval [CI], 0.74-0.98) in the validation set. The accuracy, sensitivity, and specificity of the best classifier were 89.7, 75.0, and 93.5% in the validation set, respectively. Various texture parameters differed significantly between fibroblastic and non-fibroblastic subtypes.ConclusionsRadiomics feature-based machine learning classifiers of T1C images, ADC, and FA maps are useful for differentiating meningioma grades.Key Points• Preoperative, noninvasive differentiation of the meningioma grade is important because it influences the treatment strategy. • Radiomics feature-based machine learning classifiers of T1C images, ADC, and FA maps are useful for differentiating meningioma grades. • In benign meningiomas, there were significant differences in the various texture parameters between fibroblastic and non-fibroblastic meningioma subtypes.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…