• Acta neurochirurgica · Nov 2020

    Development of machine learning-based preoperative predictive analytics for unruptured intracranial aneurysm surgery: a pilot study.

    • Victor E Staartjes, Martina Sebök, Patricia G Blum, Carlo Serra, Menno R Germans, Niklaus Krayenbühl, Luca Regli, and Giuseppe Esposito.
    • Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.
    • Acta Neurochir (Wien). 2020 Nov 1; 162 (11): 2759-2765.

    BackgroundThe decision to treat unruptured intracranial aneurysms (UIAs) or not is complex and requires balancing of risk factors and scores. Machine learning (ML) algorithms have previously been effective at generating highly accurate and comprehensive individualized preoperative predictive analytics in transsphenoidal pituitary and open tumor surgery. In this pilot study, we evaluate whether ML-based prediction of clinical endpoints is feasible for microsurgical management of UIAs.MethodsBased on data from a prospective registry, we developed and internally validated ML models to predict neurological outcome at discharge, as well as presence of new neurological deficits and any complication at discharge. Favorable neurological outcome was defined as modified Rankin scale (mRS) 0 to 2. According to the Clavien-Dindo grading (CDG), every adverse event during the post-operative course (surgery and not surgery related) is recorded as a complication. Input variables included age; gender; aneurysm complexity, diameter, location, number, and prior treatment; prior subarachnoid hemorrhage (SAH); presence of anticoagulation, antiplatelet therapy, and hypertension; microsurgical technique and approach; and various unruptured aneurysm scoring systems (PHASES, ELAPSS, UIATS).ResultsWe included 156 patients (26.3% male; mean [SD] age, 51.7 [11.0] years) with UIAs: 37 (24%) of them were treated for multiple aneurysm and 39 (25%) were treated for a complex aneurysm. Poor neurological outcome (mRS ≥ 3) was seen in 12 patients (7.7%) at discharge. New neurological deficits were seen in 10 (6.4%), and any kind of complication occurred in 20 (12.8%) patients. In the internal validation cohort, area under the curve (AUC) and accuracy values of 0.63-0.77 and 0.78-0.91 were observed, respectively.ConclusionsApplication of ML enables prediction of early clinical endpoints after microsurgery for UIAs. Our pilot study lays the groundwork for development of an externally validated multicenter clinical prediction model.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…