• Clin. Orthop. Relat. Res. · Feb 2020

    Multicenter Study Comparative Study

    Development and Internal Validation of Machine Learning Algorithms for Preoperative Survival Prediction of Extremity Metastatic Disease.

    • Quirina C B S Thio, Aditya V Karhade, Bas J J Bindels, Paul T Ogink, Bramer Jos A M JAM Department of Orthopedic Surgery, Academic University Medical Center, University of Amsterdam, Amsterdam, the Netherlands, Marco L Ferrone, Santiago Lozano Calderón, Kevin A Raskin, and Joseph H Schwab.
    • Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
    • Clin. Orthop. Relat. Res. 2020 Feb 1; 478 (2): 322-333.

    BackgroundA preoperative estimation of survival is critical for deciding on the operative management of metastatic bone disease of the extremities. Several tools have been developed for this purpose, but there is room for improvement. Machine learning is an increasingly popular and flexible method of prediction model building based on a data set. It raises some skepticism, however, because of the complex structure of these models.Questions/PurposesThe purposes of this study were (1) to develop machine learning algorithms for 90-day and 1-year survival in patients who received surgical treatment for a bone metastasis of the extremity, and (2) to use these algorithms to identify those clinical factors (demographic, treatment related, or surgical) that are most closely associated with survival after surgery in these patients.MethodsAll 1090 patients who underwent surgical treatment for a long-bone metastasis at two institutions between 1999 and 2017 were included in this retrospective study. The median age of the patients in the cohort was 63 years (interquartile range [IQR] 54 to 72 years), 56% of patients (610 of 1090) were female, and the median BMI was 27 kg/m (IQR 23 to 30 kg/m). The most affected location was the femur (70%), followed by the humerus (22%). The most common primary tumors were breast (24%) and lung (23%). Intramedullary nailing was the most commonly performed type of surgery (58%), followed by endoprosthetic reconstruction (22%), and plate screw fixation (14%). Missing data were imputed using the missForest methods. Features were selected by random forest algorithms, and five different models were developed on the training set (80% of the data): stochastic gradient boosting, random forest, support vector machine, neural network, and penalized logistic regression. These models were chosen as a result of their classification capability in binary datasets. Model performance was assessed on both the training set and the validation set (20% of the data) by discrimination, calibration, and overall performance.ResultsWe found no differences among the five models for discrimination, with an area under the curve ranging from 0.86 to 0.87. All models were well calibrated, with intercepts ranging from -0.03 to 0.08 and slopes ranging from 1.03 to 1.12. Brier scores ranged from 0.13 to 0.14. The stochastic gradient boosting model was chosen to be deployed as freely available web-based application and explanations on both a global and an individual level were provided. For 90-day survival, the three most important factors associated with poorer survivorship were lower albumin level, higher neutrophil-to-lymphocyte ratio, and rapid growth primary tumor. For 1-year survival, the three most important factors associated with poorer survivorship were lower albumin level, rapid growth primary tumor, and lower hemoglobin level.ConclusionsAlthough the final models must be externally validated, the algorithms showed good performance on internal validation. The final models have been incorporated into a freely accessible web application that can be found at https://sorg-apps.shinyapps.io/extremitymetssurvival/. Pending external validation, clinicians may use this tool to predict survival for their individual patients to help in shared treatment decision making.Level Of EvidenceLevel III, therapeutic study.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.