• Respiratory care · Sep 2020

    Adding Continuous Vital Sign Information to Static Clinical Data Improves the Prediction of Length of Stay After Intubation: A Data-Driven Machine Learning Approach.

    • David Castiñeira, Katherine R Schlosser, Alon Geva, Amir R Rahmani, Gaston Fiore, Brian K Walsh, Craig D Smallwood, John H Arnold, and Mauricio Santillana.
    • Massachusetts Institute of Technology, Cambridge, Massachusetts. davidcastineira@outlook.com msantill@g.harvard.edu.
    • Respir Care. 2020 Sep 1; 65 (9): 1367-1377.

    BackgroundBedside monitors in the ICU routinely measure and collect patients' physiologic data in real time to continuously assess the health status of patients who are critically ill. With the advent of increased computational power and the ability to store and rapidly process big data sets in recent years, these physiologic data show promise in identifying specific outcomes and/or events during patients' ICU hospitalization.MethodsWe introduced a methodology designed to automatically extract information from continuous-in-time vital sign data collected from bedside monitors to predict if a patient will experience a prolonged stay (length of stay) on mechanical ventilation, defined as >4 d, in a pediatric ICU.ResultsContinuous-in-time vital signs information and clinical history data were retrospectively collected for 284 ICU subjects from their first 24 h on mechanical ventilation from a medical-surgical pediatric ICU at Boston Children's Hospital. Multiple machine learning models were trained on multiple subsets of these subjects to predict the likelihood that each of these subjects would experience a long stay. We evaluated the predictive power of our models strictly on unseen hold-out validation sets of subjects. Our methodology achieved model performance of >83% (area under the curve) by using only vital sign information as input, and performances of 90% (area under the curve) by combining vital sign information with subjects' static clinical data readily available in electronic health records. We implemented this approach on 300 independently trained experiments with different choices of training and hold-out validation sets to ensure the consistency and robustness of our results in our study sample. The predictive power of our approach outperformed recent efforts that used deep learning to predict a similar task.ConclusionsOur proposed workflow may prove useful in the design of scalable approaches for real-time predictive systems in ICU environments, exploiting real-time vital sign information from bedside monitors. (ClinicalTrials.gov registration NCT02184208.).Copyright © 2020 by Daedalus Enterprises.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…