• Intern Emerg Med · Sep 2020

    Prediction of general medical admission length of stay with natural language processing and deep learning: a pilot study.

    • Stephen Bacchi, Samuel Gluck, Yiran Tan, Ivana Chim, Joy Cheng, Toby Gilbert, David K Menon, Jim Jannes, Timothy Kleinig, and Simon Koblar.
    • Neurology Department, Royal Adelaide Hospital, Port Road, Adelaide, SA, 5000, Australia. stephen.bacchi@sa.gov.au.
    • Intern Emerg Med. 2020 Sep 1; 15 (6): 989-995.

    AbstractLength of stay (LOS) and discharge destination predictions are key parts of the discharge planning process for general medical hospital inpatients. It is possible that machine learning, using natural language processing, may be able to assist with accurate LOS and discharge destination prediction for this patient group. Emergency department triage and doctor notes were retrospectively collected on consecutive general medical and acute medical unit admissions to a single tertiary hospital from a 2-month period in 2019. These data were used to assess the feasibility of predicting LOS and discharge destination using natural language processing and a variety of machine learning models. 313 patients were included in the study. The artificial neural network achieved the highest accuracy on the primary outcome of predicting whether a patient would remain in hospital for > 2 days (accuracy 0.82, area under the received operator curve 0.75, sensitivity 0.47 and specificity 0.97). When predicting LOS as an exact number of days, the artificial neural network achieved a mean absolute error of 2.9 and a mean squared error of 16.8 on the test set. For the prediction of home as a discharge destination (vs any non-home alternative), all models performed similarly with an accuracy of approximately 0.74. This study supports the feasibility of using natural language processing to predict general medical inpatient LOS and discharge destination. Further research is indicated with larger, more detailed, datasets from multiple centres to optimise and examine the accuracy that may be achieved with such predictions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.