• Ann. Intern. Med. · Nov 2020

    Deep Learning Using Chest Radiographs to Identify High-Risk Smokers for Lung Cancer Screening Computed Tomography: Development and Validation of a Prediction Model.

    • Michael T Lu, Vineet K Raghu, Thomas Mayrhofer, Hugo J W L Aerts, and Udo Hoffmann.
    • Massachusetts General Hospital Cardiovascular Imaging Research Center, Brigham and Women's Hospital Program for Artificial Intelligence in Medicine, and Harvard Medical School, Boston, Massachusetts (M.T.L., V.K.R., U.H.).
    • Ann. Intern. Med. 2020 Nov 3; 173 (9): 704-713.

    BackgroundLung cancer screening with chest computed tomography (CT) reduces lung cancer death. Centers for Medicare & Medicaid Services (CMS) eligibility criteria for lung cancer screening with CT require detailed smoking information and miss many incident lung cancers. An automated deep-learning approach based on chest radiograph images may identify more smokers at high risk for lung cancer who could benefit from screening with CT.ObjectiveTo develop and validate a convolutional neural network (CXR-LC) that predicts long-term incident lung cancer using data commonly available in the electronic medical record (EMR) (chest radiograph, age, sex, and whether currently smoking).DesignRisk prediction study.SettingU.S. lung cancer screening trials.ParticipantsThe CXR-LC model was developed in the PLCO (Prostate, Lung, Colorectal, and Ovarian) Cancer Screening Trial (n = 41 856). The final CXR-LC model was validated in additional PLCO smokers (n = 5615, 12-year follow-up) and NLST (National Lung Screening Trial) heavy smokers (n = 5493, 6-year follow-up). Results are reported for validation data sets only.MeasurementsUp to 12-year lung cancer incidence predicted by CXR-LC.ResultsThe CXR-LC model had better discrimination (area under the receiver-operating characteristic curve [AUC]) for incident lung cancer than CMS eligibility (PLCO AUC, 0.755 vs. 0.634; P < 0.001). The CXR-LC model's performance was similar to that of PLCOM2012, a state-of-the-art risk score with 11 inputs, in both the PLCO data set (CXR-LC AUC of 0.755 vs. PLCOM2012 AUC of 0.751) and the NLST data set (0.659 vs. 0.650). When compared in equal-sized screening populations, CXR-LC was more sensitive than CMS eligibility in the PLCO data set (74.9% vs. 63.8%; P = 0.012) and missed 30.7% fewer incident lung cancers. On decision curve analysis, CXR-LC had higher net benefit than CMS eligibility and similar benefit to PLCOM2012.LimitationValidation in lung cancer screening trials and not a clinical setting.ConclusionThe CXR-LC model identified smokers at high risk for incident lung cancer, beyond CMS eligibility and using information commonly available in the EMR.Primary Funding SourceNone.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…