• Stat Methods Med Res · Jun 2012

    Propensity scores: from naive enthusiasm to intuitive understanding.

    • Elizabeth Williamson, Ruth Morley, Alan Lucas, and James Carpenter.
    • Murdoch Childrens Research Institute, Melbourne, Australia. elizabeth.williamson@monash.edu
    • Stat Methods Med Res. 2012 Jun 1; 21 (3): 273-93.

    AbstractEstimation of the effect of a binary exposure on an outcome in the presence of confounding is often carried out via outcome regression modelling. An alternative approach is to use propensity score methodology. The propensity score is the conditional probability of receiving the exposure given the observed covariates and can be used, under the assumption of no unmeasured confounders, to estimate the causal effect of the exposure. In this article, we provide a non-technical and intuitive discussion of propensity score methodology, motivating the use of the propensity score approach by analogy with randomised studies, and describe the four main ways in which this methodology can be implemented. We carefully describe the population parameters being estimated - an issue that is frequently overlooked in the medical literature. We illustrate these four methods using data from a study investigating the association between maternal choice to provide breast milk and the infant's subsequent neurodevelopment. We outline useful extensions of propensity score methodology and discuss directions for future research. Propensity score methods remain controversial and there is no consensus as to when, if ever, they should be used in place of traditional outcome regression models. We therefore end with a discussion of the relative advantages and disadvantages of each.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.