• Chest · Feb 2021

    Randomized Controlled Trial

    Effect of normobaric hypoxia on exercise performance in pulmonary hypertension - randomized trial.

    • Simon R Schneider, Laura C Mayer, Mona Lichtblau, Charlotte Berlier, Esther I Schwarz, Stéphanie Saxer, Michael Furian, Konrad E Bloch, and Silvia Ulrich.
    • Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland; Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland.
    • Chest. 2021 Feb 1; 159 (2): 757-771.

    BackgroundMany patients with pulmonary arterial or chronic thromboembolic pulmonary hypertension (PH) wish to travel to altitude or by airplane, but their risk of hypoxia-related adverse health effects is insufficiently explored.Research QuestionHow does hypoxia, compared with normoxia, affect constant work-rate exercise test (CWRET) time in patients with PH, and which physiologic mechanisms are involved?Study Design And MethodsStable patients with PH with resting Pao2 ≥ 7.3 kPa underwent symptom-limited cycling CWRET (60% of maximal workload) while breathing normobaric hypoxic air (hypoxia; Fio2, 15%) and ambient air (normoxia; Fio2, 21%) in a randomized cross-over design. Borg dyspnea score, arterial blood gases, tricuspid regurgitation pressure gradient, and mean pulmonary artery pressure/cardiac output ratio (mean PAP/CO) by echocardiography were assessed before and during end-CWRET.ResultsTwenty-eight patients (13 women) were included: median (quartiles) age, 66 (54; 74) years; mean pulmonary artery pressure, 41 (29; 49) mm Hg; and pulmonary vascular resistance, 5.4 (4; 8) Wood units. Under normoxia and hypoxia, CWRET times were 16.9 (8.0; 30.0) and 6.7 (5.5; 27.3) min, respectively, with a median difference (95% CI) of -0.7 (-3.1 to 0.0) min corresponding to -7 (-32 to 0.0)% (P = .006). At end-exercise in normoxia and hypoxia, respectively, median values and differences in corresponding variables were as follows: Pao2: 8.0 vs 6.4, -1.7 (-2.7 to -1.1) kPa; arterial oxygen content: 19.2 vs 17.2, -1.7 (-3 to -0.1) mL/dL; Paco2: 4.7 vs 4.3, -0.3 (-0.5 to -0.1) kPa; lactate: 3.7 vs 3.7, 0.9 (0.1 to 1.6) mM (P < .05 all differences). Values for Borg scale score: 7 vs 6, 0.5 (0 to 1); tricuspid pressure gradient: 89 vs 77, -3 (-9 to 16) mm Hg; and mean PAP/CO: 4.5 vs 3.3, 0.3 (-0.8 to 1.4) Wood units remained unchanged. In multivariable regression, baseline pulmonary vascular resistance was the sole predictor of hypoxia-induced change in CWRET time.InterpretationIn patients with PH, short-time exposure to hypoxia was well tolerated but reduced CWRET time compared with normoxia in association with hypoxemia, lactacidemia, and hypocapnia. Because pulmonary hemodynamics and dyspnea at end-exercise remained unaltered, the hypoxia-induced exercise limitation may be due to a reduced oxygen delivery causing peripheral tissue hypoxia, augmented lactic acid loading and hyperventilation.Trial RegistryClinicalTrials.gov; No.: NCT03592927; URL: www.clinicaltrials.gov.Copyright © 2020 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.