• Scientific reports · Apr 2020

    Comparison of wavelet and correlation indices of cerebral autoregulation in a pediatric swine model of cardiac arrest.

    • Xiuyun Liu, Xiao Hu, Ken M Brady, Raymond Koehler, Peter Smielewski, Marek Czosnyka, Joseph Donnelly, and Jennifer K Lee.
    • Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA. Liuxiuyun1@gmail.com.
    • Sci Rep. 2020 Apr 3; 10 (1): 5926.

    AbstractExisting cerebrovascular blood pressure autoregulation metrics have not been translated to clinical care for pediatric cardiac arrest, in part because signal noise causes high index time-variability. We tested whether a wavelet method that uses near-infrared spectroscopy (NIRS) or intracranial pressure (ICP) decreases index variability compared to that of commonly used correlation indices. We also compared whether the methods identify the optimal arterial blood pressure (ABPopt) and lower limit of autoregulation (LLA). 68 piglets were randomized to cardiac arrest or sham procedure with continuous monitoring of cerebral blood flow using laser Doppler, NIRS and ICP. The arterial blood pressure (ABP) was gradually reduced until it dropped to below the LLA. Several autoregulation indices were calculated using correlation and wavelet methods, including the pressure reactivity index (PRx and wPRx), cerebral oximetry index (COx and wCOx), and hemoglobin volume index (HVx and wHVx). Wavelet methodology had less index variability with smaller standard deviations. Both wavelet and correlation methods distinguished functional autoregulation (ABP above LLA) from dysfunctional autoregulation (ABP below the LLA). Both wavelet and correlation methods also identified ABPopt with high agreement. Thus, wavelet methodology using NIRS may offer an accurate vasoreactivity monitoring method with reduced signal noise after pediatric cardiac arrest.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.