-
- Sara H Browne, Mike Bernstein, Samuel C Pan, Gonzalez GarciaJonathanJUniversity of California, San Diego, La Jolla, CA., Craig A Easson, Chung-Che Huang, and Florin Vaida.
- University of California, San Diego, La Jolla, CA; Specialists in Global Health, Encinitas, CA. Electronic address: shbrowne@health.ucsd.edu.
- Chest. 2021 Feb 1; 159 (2): 724732724-732.
BackgroundMillions of smartphones contain a photoplethysmography (PPG) biosensor (Maxim Integrated) that accurately measures pulse oximetry. No clinical use of these embedded sensors is currently being made, despite the relevance of remote clinical pulse oximetry to the management of chronic cardiopulmonary disease, and the triage, initial management, and remote monitoring of people affected by respiratory viral pandemics, such as severe acute respiratory syndrome coronavirus 2 or influenza. To be used for clinical pulse oximetry the embedded PPG system must be paired with an application (app) and meet US Food and Drug Administration (FDA) and International Organization for Standardization (ISO) requirements.Research QuestionDoes this smartphone sensor with app meet FDA/ISO requirements? Are measurements obtained using this system comparable to those of hospital reference devices, across a wide range of people?Study Design And MethodsWe performed laboratory testing addressing ISO and FDA requirements in 10 participants using the smartphone sensor with app. Subsequently, we performed an open-label clinical study on 320 participants with widely varying characteristics, to compare the accuracy and precision of readings obtained by patients with those of hospital reference devices, using rigorous statistical methodology.Results"Breathe down" testing in the laboratory showed that the total root-mean-square deviation of oxygen saturation (Spo2) measurement was 2.2%, meeting FDA/ISO standards. Clinical comparison of the smartphone sensor with app vs hospital reference devices determined that Spo2 and heart rate accuracy were 0.48% points (95% CI, 0.38-0.58; P < .001) and 0.73 bpm (95% CI, 0.33-1.14; P < .001), respectively; Spo2 and heart rate precision were 1.25 vs reference 0.95% points (P < .001) and 5.99 vs reference 3.80 bpm (P < .001), respectively. These small differences were similar to the variation found between two FDA-approved reference instruments for Spo2: accuracy, 0.52% points (95% CI, 0.41-0.64; P < .001) and precision, 1.01 vs 0.86% points (P < .001).InterpretationOur findings support the application for full FDA/ISO approval of the smartphone sensor with app tested for use in clinical pulse oximetry. Given the immense and immediate practical medical importance of remote intermittent clinical pulse oximetry to both chronic disease management and the global ability to respond to respiratory viral pandemics, the smartphone sensor with app should be prioritized and fast-tracked for FDA/ISO approval to allow clinical use.Trial RegistryClinicalTrials.gov; No.: NCT04233827; URL: www.clinicaltrials.gov.Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.