• J. Neurol. Neurosurg. Psychiatr. · Dec 2020

    Untargeted metabolomics yields insight into ALS disease mechanisms.

    • Stephen A Goutman, Jonathan Boss, Kai Guo, Fadhl M Alakwaa, Adam Patterson, Sehee Kim, Masha Georges Savelieff, Junguk Hur, and Eva L Feldman.
    • Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.
    • J. Neurol. Neurosurg. Psychiatr. 2020 Dec 1; 91 (12): 132913381329-1338.

    ObjectiveTo identify dysregulated metabolic pathways in amyotrophic lateral sclerosis (ALS) versus control participants through untargeted metabolomics.MethodsUntargeted metabolomics was performed on plasma from ALS participants (n=125) around 6.8 months after diagnosis and healthy controls (n=71). Individual differential metabolites in ALS cases versus controls were assessed by Wilcoxon rank-sum tests, adjusted logistic regression and partial least squares-discriminant analysis (PLS-DA), while group lasso explored sub-pathway-level differences. Adjustment parameters included sex, age and body mass index (BMI). Metabolomics pathway enrichment analysis was performed on metabolites selected by the above methods. Finally, machine learning classification algorithms applied to group lasso-selected metabolites were evaluated for classifying case status.ResultsThere were no group differences in sex, age and BMI. Significant metabolites selected were 303 by Wilcoxon, 300 by logistic regression, 295 by PLS-DA and 259 by group lasso, corresponding to 11, 13, 12 and 22 enriched sub-pathways, respectively. 'Benzoate metabolism', 'ceramides', 'creatine metabolism', 'fatty acid metabolism (acyl carnitine, polyunsaturated)' and 'hexosylceramides' sub-pathways were enriched by all methods, and 'sphingomyelins' by all but Wilcoxon, indicating these pathways significantly associate with ALS. Finally, machine learning prediction of ALS cases using group lasso-selected metabolites achieved the best performance by regularised logistic regression with elastic net regularisation, with an area under the curve of 0.98 and specificity of 83%.ConclusionIn our analysis, ALS led to significant metabolic pathway alterations, which had correlations to known ALS pathomechanisms in the basic and clinical literature, and may represent important targets for future ALS therapeutics.© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.