• JMIR Public Health Surveill · May 2020

    Tracking Social Media Discourse About the COVID-19 Pandemic: Development of a Public Coronavirus Twitter Data Set.

    • Emily Chen, Kristina Lerman, and Emilio Ferrara.
    • Information Sciences Institute, University of Southern California, Marina del Rey, CA, United States.
    • JMIR Public Health Surveill. 2020 May 29; 6 (2): e19273.

    BackgroundAt the time of this writing, the coronavirus disease (COVID-19) pandemic outbreak has already put tremendous strain on many countries' citizens, resources, and economies around the world. Social distancing measures, travel bans, self-quarantines, and business closures are changing the very fabric of societies worldwide. With people forced out of public spaces, much of the conversation about these phenomena now occurs online on social media platforms like Twitter.ObjectiveIn this paper, we describe a multilingual COVID-19 Twitter data set that we are making available to the research community via our COVID-19-TweetIDs GitHub repository.MethodsWe started this ongoing data collection on January 28, 2020, leveraging Twitter's streaming application programming interface (API) and Tweepy to follow certain keywords and accounts that were trending at the time data collection began. We used Twitter's search API to query for past tweets, resulting in the earliest tweets in our collection dating back to January 21, 2020.ResultsSince the inception of our collection, we have actively maintained and updated our GitHub repository on a weekly basis. We have published over 123 million tweets, with over 60% of the tweets in English. This paper also presents basic statistics that show that Twitter activity responds and reacts to COVID-19-related events.ConclusionsIt is our hope that our contribution will enable the study of online conversation dynamics in the context of a planetary-scale epidemic outbreak of unprecedented proportions and implications. This data set could also help track COVID-19-related misinformation and unverified rumors or enable the understanding of fear and panic-and undoubtedly more.©Emily Chen, Kristina Lerman, Emilio Ferrara. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 29.05.2020.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…