• Reg Anesth Pain Med · Nov 2020

    Role of peripheral sensory neuron mu-opioid receptors in nociceptive, inflammatory, and neuropathic pain.

    • Awinita Barpujari, Neil Ford, Shao-Qiu He, Qian Huang, Claire Gaveriaux-Ruff, Xinzhong Dong, Yun Guan, and Srinivasa Raja.
    • Division of Pain Medicine, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
    • Reg Anesth Pain Med. 2020 Nov 1; 45 (11): 907-916.

    Background And ObjectiveThe role of peripheral mu-opioid receptors (MOPs) in chronic pain conditions is not well understood. Here, we used a combination of mouse genetics, behavioral assays, and pharmacologic interventions to investigate the contribution of primary afferent MOPs to nociceptive, inflammatory, and neuropathic pain, as well as to opioid analgesia.MethodsWe generated conditional knockout mice in which MOPs were selectively deleted in primary sensory neurons. Inflammatory and neuropathic pain states were induced in mutant and control wild-type mice and their behavioral responses to noxious stimuli were compared. Gross motor function was also evaluated. Immunohistochemistry was used to assess MOP expression in the dorsal root ganglia, periaqueductal gray, and small intestine. The effects of MOP agonists DALDA (dermorphin [D-Arg2, Lys4] (1-4) amide) and morphine were evaluated in pain behavior assays, and their effects on neuronal physiology in the dorsal root ganglia were evaluated in whole-cell patch-clamp recordings.ResultsConditional MOP knockouts and control mice exhibited similar behavioral responses to acute nociceptive stimuli and developed similar inflammation-induced hypersensitivity. Unilateral nerve injury in animals lacking peripheral MOPs induced enhanced, bilateral mechanical allodynia. Subcutaneously administered DALDA was unable to decrease the hypersensitivity induced by inflammation and nerve injury in MOP knockout animals, and morphine's antinociceptive effects were significantly attenuated in the absence of peripheral MOPs.ConclusionMOPs in primary sensory neurons contribute to the modulation of neuropathic pain behavior and opioid analgesia. Our observations highlight the clinical potential of peripherally acting opioid agonists in the management of inflammatory and neuropathic pain.© American Society of Regional Anesthesia & Pain Medicine 2020. No commercial re-use. See rights and permissions. Published by BMJ.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.