-
J. Thorac. Cardiovasc. Surg. · May 2022
Transplantation of viable mitochondria improves right ventricular performance and pulmonary artery remodeling in rats with pulmonary arterial hypertension.
- Chih-Hsin Hsu, Jun-Neng Roan, Shih-Yuan Fang, Meng-Hsuan Chiu, Tzu-Ting Cheng, Chien-Chi Huang, Ming-Wei Lin, and Chen-Fuh Lam.
- Department of Internal Medicine, National Cheng Kung University Hospital and College of Medicine, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan.
- J. Thorac. Cardiovasc. Surg. 2022 May 1; 163 (5): e361e373e361-e373.
ObjectiveBecause mitochondrial dysfunction is a key factor in the progression of pulmonary hypertension, this study tested the hypothesis that transplantation of exogenous viable mitochondria can reverse pulmonary artery remodeling and restore right ventricular performance in pulmonary hypertension.MethodsPulmonary hypertension was induced by parenteral injection of monocrotaline (60 mg/kg) and creation of a left-to-right shunt aortocaval fistula in rats. Three weeks after creation of fistula, the animals were randomly assigned to receive intravenous delivery of placebo solution or allogeneic mitochondria once weekly for 3 consecutive weeks. Mitochondria (100 μg) were isolated from the freshly harvested soleus muscles of naïve rats. Transthoracic echocardiography was performed at 3 weeks after mitochondrial delivery.ResultsEx vivo heart-lung block images acquired by an IVIS Spectrum (PerkinElmer, Waltham, Mass) imaging system confirmed the enhancement of MitoTracker (Invitrogen, Carlsbad, Calif) fluorescence in the pulmonary arteries. Mitochondria transplantation significantly increased lung tissue adenosine triphosphate concentrations and improved right ventricular performance, as evidenced by a reduction in serum levels of B-type natriuretic peptide and ventricular diameter. Right ventricular mass and wall thickness were restored in the mitochondrial group. In the pulmonary arteries of rats that received mitochondrial treatment, vascular smooth muscle cells expressed higher levels of α-smooth muscle actin and smooth muscle myosin heavy chain II, indicating the maintenance of the nonproliferative, contractile phenotype. The hyper-reactivity of isolated pulmonary arteries to α-adrenergic stimulation was also attenuated after mitochondrial transplantation.ConclusionsTransplantation of viable mitochondria can restore the contractile phenotype and vasoreactivity of the pulmonary artery, thereby reducing the afterload and right ventricular remodeling in rats with established pulmonary hypertension. The improvement in overall right ventricular performance suggests that mitochondrial transplantation can be a revolutionary clinical therapeutic option for the management of pulmonary hypertension.Copyright © 2020 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.