• Curr Med Res Opin · Mar 2020

    Comparative Study

    Myocardial infarction in type 2 diabetes using sodium-glucose co-transporter-2 inhibitors, dipeptidyl peptidase-4 inhibitors or glucagon-like peptide-1 receptor agonists: proportional hazards analysis by deep neural network based machine learning.

    • Tomohide Yamada, Kosuke Iwasaki, Shotaro Maedera, Katsuya Ito, Tomomi Takeshima, Hisashi Noma, and Nobuhiro Shojima.
    • Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
    • Curr Med Res Opin. 2020 Mar 1; 36 (3): 403-409.

    AbstractAims: Some hypoglycemic therapies are associated with lower risk of cardiovascular outcomes. We investigated the incidence of cardiovascular disease among patients with type 2 diabetes using antidiabetic drugs from three classes, which were sodium-glucose co-transporter-2 inhibitors (SGLT-2is), glucagon-like peptide-1 receptor agonists (GLP-1RAs) and dipeptidyl peptidase-4 inhibitors (DPP-4is).Materials and methods: We compared the risk of myocardial infarction (MI) among these drugs and developed a machine learning model for predicting MI in patients without prior heart disease. We analyzed US health plan data for patients without prior MI or insulin therapy who were aged ≥40 years at initial prescription and had not received oral antidiabetic drugs for ≥6 months previously. After developing a machine learning model to predict MI, proportional hazards analysis of MI incidence was conducted using the risk obtained with this model and the drug classes as explanatory variables.Results: We analyzed 199,116 patients (mean age: years), comprising 110,278 (58.6) prescribed DPP-4is, 43,538 (55.1) prescribed GLP-1RAs and 45,300 (55.3) prescribed SGLT-2is. Receiver operating characteristics analysis showed higher precision of machine learning over logistic regression analysis. Proportional hazards analysis by machine learning revealed a significantly lower risk of MI with SGLT-2is or GLP-1RAs than DPP-4is (hazard ratio: 0.81, 95% confidence interval: 0.72-0.91, p = .0004 vs. 0.63, 0.56-0.72, p < .0001). MI risk was also significantly lower with GLP-1RAs than SGLT-2is (0.77, 0.66-0.90, p = .001).Limitations: All patients analyzed were covered by US commercial health plans, so information on patients aged ≥65 years was limited and the socioeconomic background may have been biased. Also, the observation period differed among the three classes of drugs due to differing release dates.Conclusions: Machine learning analysis suggested the risk of MI was 37% lower for type 2 diabetes patients without prior MI using GLP-1RAs versus DPP-4is, while the risk was 19% lower for SGLT-2is versus DPP-4is.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.