• Accid Anal Prev · Oct 2016

    Comparative Study

    Comparative analysis of driver's brake perception-reaction time at signalized intersections with and without countdown timer using parametric duration models.

    • Chuanyun Fu, Yaping Zhang, Yiming Bie, and Liwei Hu.
    • School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, China. Electronic address: chuanyunhit@gmail.com.
    • Accid Anal Prev. 2016 Oct 1; 95 (Pt B): 448-460.

    AbstractCountdown timers display the time left on the current signal, which makes drivers be more ready to react to the phase change. However, previous related studies have rarely explored the effects of countdown timer on driver's brake perception-reaction time (BPRT) to yellow light. The goal of this study was therefore to characterize and model driver's BPRT to yellow signal at signalized intersections with and without countdown timer. BPRT data for "first-to-stop" vehicles after yellow onset within the transitional zone were collected through on-site observation at six signalized intersections in Harbin, China. Statistical analysis showed that the observed 15th, 50th, and 85th percentile BPRTs without countdown timer were 0.52, 0.84, and 1.26s, respectively. The observed 15th, 50th, and 85th percentile BPRTs with countdown timer were 0.32, 1.20, and 2.52s, respectively. Log-logistic distribution appeared to best fit the BPRT without countdown timer, while Weibull distribution seemed to best fit the BPRT with countdown timer. After that, a Log-logistic accelerated failure time (AFT) duration model was developed to model driver's BPRT without countdown timer, whereas a Weibull AFT duration model was established to model driver's BPRT with countdown timer. Three significant factors affecting the BPRT identified in both AFT models included yellow-onset distance from the stop line, yellow-onset approach speed, and deceleration rate. No matter whether the presence of countdown timer or not, BPRT increased as yellow-onset distance to the stop line or deceleration rate increased, but decreased as yellow-onset speed increased. The impairment of driver's BPRT due to countdown timer appeared to increase with yellow-onset distance to the stop line or deceleration rate, but decrease with yellow-onset speed. An increase in driver's BPRT because of countdown timer may induce risky driving behaviors (i.e., stop abruptly, or even violate traffic signal), revealing a weakness of countdown timer in traffic safety aspect. Copyright © 2015 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.