• Yonsei medical journal · Oct 2020

    Squamous Cell Carcinoma and Lymphoma of the Oropharynx: Differentiation Using a Radiomics Approach.

    • Sohi Bae, Yoon Seong Choi, Beomseok Sohn, Sung Soo Ahn, Seung Koo Lee, Jaemoon Yang, and Jinna Kim.
    • Department of Radiology, National Health Insurance Service Ilsan Hospital, Goyang, Korea.
    • Yonsei Med. J. 2020 Oct 1; 61 (10): 895-900.

    AbstractThe purpose of this study was to evaluate the diagnostic performance of magnetic resonance (MR) radiomics-based machine learning algorithms in differentiating squamous cell carcinoma (SCC) from lymphoma in the oropharynx. MR images from 87 patients with oropharyngeal SCC (n=68) and lymphoma (n=19) were reviewed retrospectively. Tumors were semi-automatically segmented on contrast-enhanced T1-weighted images registered to T2-weighted images, and radiomic features (n=202) were extracted from contrast-enhanced T1- and T2-weighted images. The radiomics classifier was built using elastic-net regularized generalized linear model analyses with nested five-fold cross-validation. The diagnostic abilities of the radiomics classifier and visual assessment by two head and neck radiologists were evaluated using receiver operating characteristic (ROC) analyses for distinguishing SCC from lymphoma. Nineteen radiomics features were selected at least twice during the five-fold cross-validation. The mean area under the ROC curve (AUC) of the radiomics classifier was 0.750 [95% confidence interval (CI), 0.613-0.887], with a sensitivity of 84.2%, specificity of 60.3%, and an accuracy of 65.5%. Two human readers yielded AUCs of 0.613 (95% CI, 0.467-0.759) and 0.663 (95% CI, 0.531-0.795), respectively. The radiomics-based machine learning model can be useful for differentiating SCC from lymphoma of the oropharynx.© Copyright: Yonsei University College of Medicine 2020.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…