-
Multicenter Study
Deep learning analysis of the primary tumour and the prediction of lymph node metastases in gastric cancer.
- C Jin, Y Jiang, H Yu, W Wang, B Li, C Chen, Q Yuan, Y Hu, Y Xu, Z Zhou, G Li, and R Li.
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford California, USA.
- Br J Surg. 2021 May 27; 108 (5): 542-549.
BackgroundLymph node metastasis (LNM) in gastric cancer is a prognostic factor and has implications for the extent of lymph node dissection. The lymphatic drainage of the stomach involves multiple nodal stations with different risks of metastases. The aim of this study was to develop a deep learning system for predicting LNMs in multiple nodal stations based on preoperative CT images in patients with gastric cancer.MethodsPreoperative CT images from patients who underwent gastrectomy with lymph node dissection at two medical centres were analysed retrospectively. Using a discovery patient cohort, a system of deep convolutional neural networks was developed to predict pathologically confirmed LNMs at 11 regional nodal stations. To gain understanding about the networks' prediction ability, gradient-weighted class activation mapping for visualization was assessed. The performance was tested in an external cohort of patients by analysis of area under the receiver operating characteristic (ROC) curves (AUC), sensitivity and specificity.ResultsThe discovery and external cohorts included 1172 and 527 patients respectively. The deep learning system demonstrated excellent prediction accuracy in the external validation cohort, with a median AUC of 0·876 (range 0·856-0·893), sensitivity of 0·743 (0·551-0·859) and specificity of 0·936 (0·672-0·966) for 11 nodal stations. The imaging models substantially outperformed clinicopathological variables for predicting LNMs (median AUC 0·652, range 0·571-0·763). By visualizing nearly 19 000 subnetworks, imaging features related to intratumoral heterogeneity and the invasive front were found to be most useful for predicting LNMs.ConclusionA deep learning system for the prediction of LNMs was developed based on preoperative CT images of gastric cancer. The models require further validation but may be used to inform prognosis and guide individualized surgical treatment.© The Author(s) 2021. Published by Oxford University Press on behalf of BJS Society Ltd. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.