• Eur J Trauma Emerg Surg · Feb 2022

    Supplemental cerclage wiring in angle stable plate fixation of distal tibial spiral fractures enables immediate post-operative full weight-bearing: a biomechanical analysis.

    • Sabrina Sandriesser, Stefan Förch, Edgar Mayr, Falk Schrödl, Christian von Rüden, and Peter Augat.
    • Institute for Biomechanics, BG Unfallklinik Murnau, Prof. Küntscher Str. 8, 82418, Murnau, Germany. Sabrina.Sandriesser@bgu-murnau.de.
    • Eur J Trauma Emerg Surg. 2022 Feb 1; 48 (1): 621-628.

    PurposeDistal tibial fractures generally require post-operative weight-bearing restrictions. Especially geriatric patients are unable to follow these recommendations. To increase post-operative implant stability and enable early weight-bearing, augmentation of the primary osteosynthesis by cerclage is desirable. The purpose of this study was to identify the stabilizing effects of a supplemental cable cerclage following plate fixation of distal tibial spiral fractures compared to solitary plate osteosynthesis.MethodsIn eight synthetic tibiae, a reproducible spiral fracture (AO/OTA 42-A1.1c) was stabilized by angle stable plate fixation. Each specimen was statically loaded under combined axial and torsional loads to simulate partial (200 N, 2 Nm) and full (750 N, 7 Nm) weight-bearing. Tests were repeated with supplemental cable cerclage looped around the fracture zone. In a subsequent stepwise increased dynamic load scenario, construct stiffness and interfragmentary movements were analyzed.ResultsWith supplemental cable cerclage, construct stiffness almost tripled compared to solitary plate osteosynthesis (2882 ± 739 N/mm vs. 983 ± 355 N/mm; p < 0.001). Under full weight-bearing static loads, a supplemental cerclage revealed reduced axial (- 55%; p = 0.001) and shear movement (- 83%; p < 0.001), and also lowered shear movement (- 42%; p = 0.001) compared to a solitary plate under partial weight-bearing. Under dynamic loads supplemental cerclage significantly reduced axial (p = 0.005) as well as shear movements (p < 0.001).ConclusionSupplemental cable cerclage significantly increases fixation stiffness and reduces shear movement in distal tibial spiral fractures. This stabilizing effect enables from a biomechanical point of view immediate mobilization without any weight-bearing restrictions, which may improve the quality of care of orthopedic patients and may trigger a change towards early weight-bearing regimes, especially geriatric patients would benefit from.© 2020. The Author(s).

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.