• J Clin Monit Comput · Dec 2021

    Randomized Controlled Trial

    A mathematical model for predicting intracranial pressure based on noninvasively acquired PC-MRI parameters in communicating hydrocephalus.

    • Jia Long, Deshun Sun, Xi Zhou, Xianjian Huang, Jiani Hu, Jun Xia, and Guang Yang.
    • Department of Radiology, Pinghu Hospital Shenzhen University, Shenzhen, China.
    • J Clin Monit Comput. 2021 Dec 1; 35 (6): 1325-1332.

    AbstractTo develop and validate a mathematical model for predicting intracranial pressure (ICP) noninvasively using phase-contrast cine MRI (PC-MRI). We performed a retrospective analysis of PC-MRI from patients with communicating hydrocephalus (n = 138). The patients were recruited from Shenzhen Second People's Hospital between November 2017 and April 2020, and randomly allocated into training (n = 97) and independent validation (n = 41) groups. All participants underwent lumbar puncture and PC-MRI in order to evaluate ICP and cerebrospinal fluid (CSF) parameters (i.e., aqueduct diameter and flow velocity), respectively. A novel ICP-predicting model was then developed based on the nonlinear relationships between the CSF parameters, using the Levenberg-Marquardt and general global optimisation methods. There was no significant difference in baseline demographic characteristics between the training and independent validation groups. The accuracy of the model for predicting ICP was 0.899 in the training cohort (n = 97) and 0.861 in the independent validation cohort (n = 41). We obtained an ICP-predicting model that showed excellent performance in the noninvasive diagnosis of clinically significant communicating hydrocephalus.© 2020. Springer Nature B.V.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…