• N. Engl. J. Med. · Aug 2014

    Somatic mutations in cerebral cortical malformations.

    • Saumya S Jamuar, Anh-Thu N Lam, Martin Kircher, Alissa M D'Gama, Jian Wang, Brenda J Barry, Xiaochang Zhang, Robert Sean Hill, Jennifer N Partlow, Aldo Rozzo, Sarah Servattalab, Bhaven K Mehta, Meral Topcu, Dina Amrom, Eva Andermann, Bernard Dan, Elena Parrini, Renzo Guerrini, Ingrid E Scheffer, Samuel F Berkovic, Richard J Leventer, Yiping Shen, Bai Lin Wu, A James Barkovich, Mustafa Sahin, Bernard S Chang, Michael Bamshad, Deborah A Nickerson, Jay Shendure, Annapurna Poduri, Timothy W Yu, and Christopher A Walsh.
    • From the Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute (S.S.J., A.-T.N.L., A.M.D., B.J.B., X.Z., R.S.H., J.N.P., A.R., S.S., B.K.M., T.W.Y., C.A.W.), and the Departments of Laboratory Medicine (J.W., Y.S., B.L.W.) and Neurology (M.S., A.P.), Boston Children's Hospital, the Departments of Pediatrics (S.S.J., A.-T.N.L., A.M.D., B.J.B., X.Z., R.S.H., J.N.P., A.R., S.S., B.K.M., T.W.Y., C.A.W.), Neurology (S.S.J., A.-T.N.L., A.M.D., B.J.B., X.Z., R.S.H., J.N.P., A.R., S.S., B.K.M., T.W.Y., C.A.W., M.S., A.P.), and Pathology (Y.S., B.L.W.), Harvard Medical School, the Department of Neurology, Beth Israel Deaconess Medical Center (B.S.C.), and the Department of Neurology, Massachusetts General Hospital (T.W.Y.) - all in Boston; the Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore (S.S.J.); the Department of Genome Sciences, University of Washington, Seattle (M.K., M.B., D.A.N., J.S.); the Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai (J.W., Y.S.); the Division of Neurology, Department of Pediatrics, Hacettepe University School of Medicine, Sihhiye, Ankara, Turkey (M.T.); the Neurogenetics Unit, Montreal Neurological Hospital and Institute, Department of Neurology and Neurosurgery (D.A., E.A.) and Department of Human Genetics (E.A.), McGill University, Montreal; the Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels (B.D.); the Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy (E.P., R.G.); the Department of Medicine, University of Melbourne, Austin Health, Heidelberg (I.E.S., S.F.B.), Department of Paediatrics, Royal Children's Hospital, University of Melbourne, and the Florey Institute of Neuroscience and Mental Health, Melbourne (I.E.S.), and the Department of Neurology, Royal Children's Hospital, Murdoch Children'
    • N. Engl. J. Med. 2014 Aug 21; 371 (8): 733-43.

    BackgroundAlthough there is increasing recognition of the role of somatic mutations in genetic disorders, the prevalence of somatic mutations in neurodevelopmental disease and the optimal techniques to detect somatic mosaicism have not been systematically evaluated.MethodsUsing a customized panel of known and candidate genes associated with brain malformations, we applied targeted high-coverage sequencing (depth, ≥200×) to leukocyte-derived DNA samples from 158 persons with brain malformations, including the double-cortex syndrome (subcortical band heterotopia, 30 persons), polymicrogyria with megalencephaly (20), periventricular nodular heterotopia (61), and pachygyria (47). We validated candidate mutations with the use of Sanger sequencing and, for variants present at unequal read depths, subcloning followed by colony sequencing.ResultsValidated, causal mutations were found in 27 persons (17%; range, 10 to 30% for each phenotype). Mutations were somatic in 8 of the 27 (30%), predominantly in persons with the double-cortex syndrome (in whom we found mutations in DCX and LIS1), persons with periventricular nodular heterotopia (FLNA), and persons with pachygyria (TUBB2B). Of the somatic mutations we detected, 5 (63%) were undetectable with the use of traditional Sanger sequencing but were validated through subcloning and subsequent sequencing of the subcloned DNA. We found potentially causal mutations in the candidate genes DYNC1H1, KIF5C, and other kinesin genes in persons with pachygyria.ConclusionsTargeted sequencing was found to be useful for detecting somatic mutations in patients with brain malformations. High-coverage sequencing panels provide an important complement to whole-exome and whole-genome sequencing in the evaluation of somatic mutations in neuropsychiatric disease. (Funded by the National Institute of Neurological Disorders and Stroke and others.).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.