• J Chin Med Assoc · Feb 2021

    Nanodiamond-based MicroRNA Delivery System Promotes Pluripotent Stem Cells toward Myocardiogenic Reprogramming.

    • Chao-Yu Liu, Ming-Cheng Lee, Heng-Fu Lin, Yi-Ying Lin, Wei-Yi Lai, Yueh Chien, Teh-Ia Huo, Wen-Liang Lo, Yuan-Tzu Lan, Yi-Wei Chen, Pin-I Huang, Yong-Yang Liu, and Meng-Yin Yang.
    • Department of Surgery, Far-Eastern Memorial Hospital, New Taipei City, Taiwan, ROC.
    • J Chin Med Assoc. 2021 Feb 1; 84 (2): 177-182.

    BackgroundGene therapy is the advanced therapeutics for supplying or replacing the genetic material in patients with inherited disorders. Recent clinical studies have made some progress in a wide range of applications, including monogenic disorders, neurodegenerative diseases, malignant tumors, and congenital diseases. Heart diseases, especially myocardial ischemia, remain one of the leading causes of mortality worldwide and usually result in irreparable cardiomyocyte damage and severe heart failure.MethodsMost advances in induced pluripotent stem cell (iPSC) technologies for promoting regenerative medicine and stem cell research. However, the driver molecules of myocardial-lineage differentiation and the functional reconstruction capacity of iPSC-derived cardiomyocytes are still an open question. Nanomedicine-based gene delivery provided a crucial platform to carry on the biogenomic materials for equipping functionalities and engineering the living organ environment. Nanodiamond (ND), a carbon-based nanomaterial, has been discovered and shown the high biocompatible and less toxicity for transporting protein, drug, and genomic plasmids.ResultsHere, we applied ND as a gene delivery vehicle to carry microRNA (miR-181a), and then transfected into iPS to promote cardiomyocyte-lineage differentiation. Notably, miR-181a plays a key role in iPS-derived cardiomyocyte differentiation which directly targets Hox-A11, leading to elevated MyoD expression and enhanced cardiomyocyte differentiation.ConclusionOur study demonstrated that miR-181a promotes iPSC differentiation into functional cardiomyocytes. Delivery of NANO-DIAMOND-miR-181a may host clinical potential to enhance the differentiation and recovery of the cardiogenic function in injured cardiomyocytes.Copyright © 2020, the Chinese Medical Association.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…