• European radiology · Nov 2002

    CT attenuation of paired HRCT scans obtained at full inspiratory/expiratory position: comparison with pulmonary function tests.

    • Hans-Ulrich Kauczor, Jochem Hast, Claus Peter Heussel, Jens Schlegel, Peter Mildenberger, and Manfred Thelen.
    • Department of Radiology, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany. kauczor@radiologie.klinik.uni-mainz.de
    • Eur Radiol. 2002 Nov 1; 12 (11): 2757-63.

    AbstractThe purpose of this prospective study was to measure lung attenuation at paired HRCT obtained at full inspiratory/expiratory position, to correlate with pulmonary function tests (PFTs) and to characterize different types of ventilatory impairment. One hundred fifty-five patients with and without pulmonary disease underwent paired HRCT obtained at full inspiratory/expiratory position. Three scan pairs were evaluated by densito- and planimetry using dedicated software. The PFTs were available for correlation in all patients (mean interval 5 days). Mean lung density (MLD) at full inspiration was -813 HU, and MLD at full expiration was -736 HU; both, as well as the expiratory attenuation increase, demonstrated significant correlations with static and dynamic lung volumes: up to r=0.68, p<0.05 for residual volume. The MLD and emphysema indices correlated markedly better for scans obtained at full expiration than at full inspiration, e.g. correlation with the residual volume: r=0.68 compared with r=0.55. Even better correlations were obtained for the lung area (229 cm(2) at inspiration, 190 cm(2) at expiration), up to r=0.74 for the lung area in expiration and the intrathoracic gas volume. Inspiratory MLD and the expiratory attenuation increase were able to differentiate obstructive and restrictive ventilatory impairment from normal subjects, the best results were obtained from scans obtained at full expiratory position ( p<0.05). In conclusion, scans obtained at full expiratory position reveal more functional information than scans obtained at full inspiratory position. Quantitative analysis of CT obtained at full expiratory position provides good estimations of static and dynamic lung volumes as well as significant differences between normal subjects and patients with ventilatory impairment.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…