• Cochrane Db Syst Rev · Apr 2019

    Prehospital stroke scales as screening tools for early identification of stroke and transient ischemic attack.

    • Zhivko Zhelev, Greg Walker, Nicholas Henschke, Jonathan Fridhandler, and Samuel Yip.
    • NIHR CLAHRC South West Peninsula (PenCLAHRC), University of Exeter Medical School, University of Exeter, St Luke's Campus, South Cloisters (Room 3.09), Exeter, Devon, UK, EX1 2LU.
    • Cochrane Db Syst Rev. 2019 Apr 9; 4 (4): CD011427CD011427.

    BackgroundRapid and accurate detection of stroke by paramedics or other emergency clinicians at the time of first contact is crucial for timely initiation of appropriate treatment. Several stroke recognition scales have been developed to support the initial triage. However, their accuracy remains uncertain and there is no agreement which of the scales perform better.ObjectivesTo systematically identify and review the evidence pertaining to the test accuracy of validated stroke recognition scales, as used in a prehospital or emergency room (ER) setting to screen people suspected of having stroke.Search MethodsWe searched CENTRAL, MEDLINE (Ovid), Embase (Ovid) and the Science Citation Index to 30 January 2018. We handsearched the reference lists of all included studies and other relevant publications and contacted experts in the field to identify additional studies or unpublished data.Selection CriteriaWe included studies evaluating the accuracy of stroke recognition scales used in a prehospital or ER setting to identify stroke and transient Ischemic attack (TIA) in people suspected of stroke. The scales had to be applied to actual people and the results compared to a final diagnosis of stroke or TIA. We excluded studies that applied scales to patient records; enrolled only screen-positive participants and without complete 2 × 2 data.Data Collection And AnalysisTwo review authors independently conducted a two-stage screening of all publications identified by the searches, extracted data and assessed the methodologic quality of the included studies using a tailored version of QUADAS-2. A third review author acted as an arbiter. We recalculated study-level sensitivity and specificity with 95% confidence intervals (CI), and presented them in forest plots and in the receiver operating characteristics (ROC) space. When a sufficient number of studies reported the accuracy of the test in the same setting (prehospital or ER) and the level of heterogeneity was relatively low, we pooled the results using the bivariate random-effects model. We plotted the results in the summary ROC (SROC) space presenting an estimate point (mean sensitivity and specificity) with 95% CI and prediction regions. Because of the small number of studies, we did not conduct meta-regression to investigate between-study heterogeneity and the relative accuracy of the scales. Instead, we summarized the results in tables and diagrams, and presented our findings narratively.Main ResultsWe selected 23 studies for inclusion (22 journal articles and one conference abstract). We evaluated the following scales: Cincinnati Prehospital Stroke Scale (CPSS; 11 studies), Recognition of Stroke in the Emergency Room (ROSIER; eight studies), Face Arm Speech Time (FAST; five studies), Los Angeles Prehospital Stroke Scale (LAPSS; five studies), Melbourne Ambulance Stroke Scale (MASS; three studies), Ontario Prehospital Stroke Screening Tool (OPSST; one study), Medic Prehospital Assessment for Code Stroke (MedPACS; one study) and PreHospital Ambulance Stroke Test (PreHAST; one study). Nine studies compared the accuracy of two or more scales. We considered 12 studies at high risk of bias and one with applicability concerns in the patient selection domain; 14 at unclear risk of bias and one with applicability concerns in the reference standard domain; and the risk of bias in the flow and timing domain was high in one study and unclear in another 16.We pooled the results from five studies evaluating ROSIER in the ER and five studies evaluating LAPSS in a prehospital setting. The studies included in the meta-analysis of ROSIER were of relatively good methodologic quality and produced a summary sensitivity of 0.88 (95% CI 0.84 to 0.91), with the prediction interval ranging from approximately 0.75 to 0.95. This means that the test will miss on average 12% of people with stroke/TIA which, depending on the circumstances, could range from 5% to 25%. We could not obtain a reliable summary estimate of specificity due to extreme heterogeneity in study-level results. The summary sensitivity of LAPSS was 0.83 (95% CI 0.75 to 0.89) and summary specificity 0.93 (95% CI 0.88 to 0.96). However, we were uncertain in the validity of these results as four of the studies were at high and one at uncertain risk of bias. We did not report summary estimates for the rest of the scales, as the number of studies per test per setting was small, the risk of bias was high or uncertain, the results were highly heterogenous, or a combination of these.Studies comparing two or more scales in the same participants reported that ROSIER and FAST had similar accuracy when used in the ER. In the field, CPSS was more sensitive than MedPACS and LAPSS, but had similar sensitivity to that of MASS; and MASS was more sensitive than LAPSS. In contrast, MASS, ROSIER and MedPACS were more specific than CPSS; and the difference in the specificities of MASS and LAPSS was not statistically significant.Authors' ConclusionsIn the field, CPSS had consistently the highest sensitivity and, therefore, should be preferred to other scales. Further evidence is needed to determine its absolute accuracy and whether alternatives scales, such as MASS and ROSIER, which might have comparable sensitivity but higher specificity, should be used instead, to achieve better overall accuracy. In the ER, ROSIER should be the test of choice, as it was evaluated in more studies than FAST and showed consistently high sensitivity. In a cohort of 100 people of whom 62 have stroke/TIA, the test will miss on average seven people with stroke/TIA (ranging from three to 16). We were unable to obtain an estimate of its summary specificity. Because of the small number of studies per test per setting, high risk of bias, substantial differences in study characteristics and large between-study heterogeneity, these findings should be treated as provisional hypotheses that need further verification in better-designed studies.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…