• Plos One · Jan 2017

    Predicting Length of Stay among Patients Discharged from the Emergency Department-Using an Accelerated Failure Time Model.

    • Chung-Hsien Chaou, Hsiu-Hsi Chen, Shu-Hui Chang, Petrus Tang, Shin-Liang Pan, Amy Ming-Fang Yen, and Te-Fa Chiu.
    • Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou and Chang Gung University College of Medicine, Taoyuan, Taiwan.
    • Plos One. 2017 Jan 1; 12 (1): e0165756.

    BackgroundEmergency department (ED) crowding continues to be an important health care issue in modern countries. Among the many crucial quality indicators for monitoring the throughput process, a patient's length of stay (LOS) is considered the most important one since it is both the cause and the result of ED crowding. The aim of this study is to identify and quantify the influence of different patient-related or diagnostic activities-related factors on the ED LOS of discharged patients.MethodsThis is a retrospective electronic data analysis. All patients who were discharged from the ED of a tertiary teaching hospital in 2013 were included. A multivariate accelerated failure time model was used to analyze the influence of the collected covariates on patient LOS.ResultsA total of 106,206 patients were included for analysis with an overall medium ED LOS of 1.46 (interquartile range = 2.03) hours. Among them, 96% were discharged by a physician, 3.5% discharged against medical advice, 0.5% left without notice, and only 0.02% left without being seen by a physician. In the multivariate analysis, increased age (>80 vs <20, time ratio (TR) = 1.408, p<0.0001), higher acuity level (triage level I vs. level V, TR = 1.343, p<0.0001), transferred patients (TR = 1.350, p<0.0001), X-rays obtained (TR = 1.181, p<0.0001), CT scans obtained (TR = 1.515, p<0.0001), laboratory tests (TR = 2.654, p<0.0001), consultation provided (TR = 1.631, p<0.0001), observation provided (TR = 8.435, p<0.0001), critical condition declared (TR = 1.205, p<0.0001), day-shift arrival (TR = 1.223, p<0.0001), and an increased ED daily census (TR = 1.057, p<0.0001) lengthened the ED LOS with various effect sizes. On the other hand, male sex (TR = 0.982, p = 0.002), weekend arrival (TR = 0.928, p<0.0001), and adult non-trauma patients (compared with pediatric non-trauma, TR = 0.687, p<0.0001) were associated with shortened ED LOS. A prediction diagram was made accordingly and compared with the actual LOS.ConclusionsThe influential factors on the ED LOS in discharged patients were identified and quantified in the current study. The model's predicted ED LOS may provide useful information for physicians or patients to better anticipate an individual's LOS and to help the administrative level plan its staffing policy.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…