-
J. Thorac. Cardiovasc. Surg. · Sep 2021
Exosomes isolated from human cardiosphere-derived cells attenuate pressure overload-induced right ventricular dysfunction.
- Gregory J Bittle, David Morales, Nicholas Pietris, Nathaniel Parchment, Dawn Parsell, Kiel Peck, Kristopher B Deatrick, Luis Rodriguez-Borlado, Rachel R Smith, Linda Marbán, and Sunjay Kaushal.
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Md.
- J. Thorac. Cardiovasc. Surg. 2021 Sep 1; 162 (3): 975-986.e6.
ObjectivesCardiosphere-derived cell (CDC) transplantation has been shown to attenuate right ventricular (RV) dysfunction in patients with hypoplastic left heart syndrome. However, live cell transplantation requires complex handling protocols that may limit its use. Exosomes are protein and nucleic acid-containing nanovesicles secreted by many cell types, including stem cells, which have been shown to exert a cardioprotective effect comparable with whole cells following myocardial injury. We therefore sought to evaluate 3 human CDC-derived exosome preparations in a juvenile porcine model of acute pressure-induced RV dysfunction.MethodsTwenty immunocompetent juvenile Yorkshire pigs (7-10 kg) underwent pulmonary arterial banding followed by intramyocardial test agent administration: control (n = 6), XO-1 (n = 4), XO-2 (n = 5), and XO-3 (n = 5). Animals were monitored for 28 days postoperatively with periodic phlebotomy and echocardiography, followed by extensive postmortem gross and histopathologic analysis.ResultsAll animals survived the banding operation. One died suddenly on postoperative day 1; another was excluded due to nonstandard response to banding. Of the remaining animals, there were no clinical concerns. RV fractional area change was improved in the XO-1 and XO-2 groups relative to controls at postoperative day 28. On histologic analysis, exosome-treated groups exhibited decreased cardiomyocyte hypertrophy with respect to controls.ConclusionsHuman CDC-derived exosome administration was associated with significant preservation of RV systolic function in the setting of acute pressure overload. Such acellular preparations may prove superior to whole cells and may represent a novel therapeutic approach to clinical myocardial injury.Copyright © 2020. Published by Elsevier Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.