• J. Antimicrob. Chemother. · Jul 2020

    Development and validation of a UHPLC-MS/MS method for quantification of the prodrug remdesivir and its metabolite GS-441524: a tool for clinical pharmacokinetics of SARS-CoV-2/COVID-19 and Ebola virus disease.

    • Valeria Avataneo, Amedeo de Nicolò, Jessica Cusato, Miriam Antonucci, Alessandra Manca, Alice Palermiti, Catriona Waitt, Stephen Walimbwa, Mohammed Lamorde, Giovanni di Perri, and Antonio D'Avolio.
    • Laboratory of Clinical Pharmacology and Pharmacogenetics, Amedeo di Savoia Hospital, Department of Medical Sciences, University of Turin, Turin, Italy.
    • J. Antimicrob. Chemother. 2020 Jul 1; 75 (7): 1772-1777.

    BackgroundRemdesivir has received significant attention for its potential application in the treatment of COVID-19, caused by SARS-CoV-2. Remdesivir has already been tested for Ebola virus disease treatment and found to have activity against SARS and MERS coronaviruses. The remdesivir core contains GS-441524, which interferes with RNA-dependent RNA polymerases alone. In non-human primates, following IV administration, remdesivir is rapidly distributed into PBMCs and converted within 2 h to the active nucleoside triphosphate form, while GS-441524 is detectable in plasma for up to 24 h. Nevertheless, remdesivir pharmacokinetics and pharmacodynamics in humans are still unexplored, highlighting the need for a precise analytical method for remdesivir and GS-441524 quantification.ObjectivesThe validation of a reliable UHPLC-MS/MS method for remdesivir and GS-441524 quantification in human plasma.MethodsRemdesivir and GS-441524 standards and quality controls were prepared in plasma from healthy donors. Sample preparation consisted of protein precipitation, followed by dilution and injection into the QSight 220 UHPLC-MS/MS system. Chromatographic separation was obtained through an Acquity HSS T3 1.8 μm, 2.1 × 50 mm column, with a gradient of water and acetonitrile with 0.05% formic acid. The method was validated using EMA and FDA guidelines.ResultsAnalyte stability has been evaluated and described in detail. The method successfully fulfilled the validation process and it was demonstrated that, when possible, sample thermal inactivation could be a good choice in order to improve biosafety.ConclusionsThis method represents a useful tool for studying remdesivir and GS-441524 clinical pharmacokinetics, particularly during the current COVID-19 outbreak.© The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.