• Frontiers in immunology · Jan 2020

    Non-invasive Assessment of Mitochondrial Oxygen Metabolism in the Critically Ill Patient Using the Protoporphyrin IX-Triplet State Lifetime Technique-A Feasibility Study.

    • Charles Neu, Philipp Baumbach, Alina K Plooij, Kornel Skitek, Juliane Götze, Christian von Loeffelholz, Christiane Schmidt-Winter, and Sina M Coldewey.
    • Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.
    • Front Immunol. 2020 Jan 1; 11: 757.

    AbstractThe imbalance of oxygen delivery and oxygen consumption resulting in insufficient tissue oxygenation is pathognomonic for all forms of shock. Mitochondrial function plays an important role in the cellular oxygen metabolism and has been shown to impact a variety of diseases in the intensive care setting, specifically sepsis. Clinical assessment of tissue oxygenation and mitochondrial function remains elusive. The in vivo protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) allows the direct, non-invasive measurement of mitochondrial oxygen tension (mitoPO2) in the human skin. Our recently established measurement protocol for the Cellular Oxygen Metabolism (COMET) Monitor, a novel device employing the PpIX-TSLT, additionally allows the evaluation of oxygen consumption (mitoVO2) and delivery (mitoDO2). In the intensive care setting, these variables might provide new insight into mitochondrial oxygen metabolism and especially mitoDO2 might be a surrogate parameter of microcirculatory function. However, the feasibility of the PpIX-TSLT in critically ill patients has not been analyzed systematically. In this interim study analysis, we evaluated PpIX-TSLT measurements of 40 patients during the acute phase of sepsis. We assessed (a) potential adverse side effects of the method, (b) the rate of analyzable measurements, (c) the stability of mitoPO2, mitoVO2, and mitoDO2, and (d) potential covariates. Due to excessive edema in patients with sepsis, we specifically analyzed the association of patients' hydration status, assessed by bioimpedance analysis (BIA), with the aforementioned variables. We observed no side effects and acquired analyzable measurements sessions in 92.5% of patients (n = 37/40). Different measures of stability indicated moderate to good repeatability of the PpIX-TSLT variables within one session of multiple measurements. The determined limits of agreement and minimum detectable differences may be helpful in identifying outlier measurements. In conjunction with signal quality they mark a first step in developing a previously unavailable standardized measurement quality protocol. Notably, higher levels of hydration were associated with lower mitochondrial oxygen tension. We conclude that COMET measurements are viable in patients with sepsis. To validate the clinical and diagnostic relevance of the PpIX-TSLT using the COMET in the intensive care setting, future studies in critically ill patients and healthy controls are needed.Copyright © 2020 Neu, Baumbach, Plooij, Skitek, Götze, von Loeffelholz, Schmidt-Winter and Coldewey.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.