• J Med Syst · Aug 2017

    Neural Network Classifier for Automatic Detection of Invasive Versus Noninvasive Airway Management Technique Based on Respiratory Monitoring Parameters in a Pediatric Anesthesia.

    • Jorge A Gálvez, Ali Jalali, Luis Ahumada, Allan F Simpao, and Mohamed A Rehman.
    • Section of Biomedical Informatics, Department of Anesthesiology & Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA. galvezj@email.chop.edu.
    • J Med Syst. 2017 Aug 23; 41 (10): 153.

    AbstractChildren undergoing general anesthesia require airway monitoring by an anesthesia provider. The airway may be supported with noninvasive devices such as face mask or invasive devices such as a laryngeal mask airway or an endotracheal tube. The physiologic data stored provides an opportunity to apply machine learning algorithms distinguish between these modes based on pattern recognition. We retrieved three data sets from patients receiving general anesthesia in 2015 with either mask, laryngeal mask airway or endotracheal tube. Patients underwent myringotomy, tonsillectomy, adenoidectomy or inguinal hernia repair procedures. We retrieved measurements for end-tidal carbon dioxide, tidal volume, and peak inspiratory pressure and calculated statistical features for each data element per patient. We applied machine learning algorithms (decision tree, support vector machine, and neural network) to classify patients into noninvasive or invasive airway device support. We identified 300 patients per group (mask, laryngeal mask airway, and endotracheal tube) for a total of 900 patients. The neural network classifier performed better than the boosted trees and support vector machine classifiers based on the test data sets. The sensitivity, specificity, and accuracy for neural network classification are 97.5%, 96.3%, and 95.8%. In contrast, the sensitivity, specificity, and accuracy of support vector machine are 89.1%, 92.3%, and 88.3% and with the boosted tree classifier they are 93.8%, 92.1%, and 91.4%. We describe a method to automatically distinguish between noninvasive and invasive airway device support in a pediatric surgical setting based on respiratory monitoring parameters. The results show that the neural network classifier algorithm can accurately classify noninvasive and invasive airway device support.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.