-
- Jörn Lötsch and Sebastian Malkusch.
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany.
- Eur J Pain. 2021 Feb 1; 25 (2): 442-465.
BackgroundIn pain research and clinics, it is common practice to subgroup subjects according to shared pain characteristics. This is often achieved by computer-aided clustering. In response to a recent EU recommendation that computer-aided decision making should be transparent, we propose an approach that uses machine learning to provide (1) an understandable interpretation of a cluster structure to (2) enable a transparent decision process about why a person concerned is placed in a particular cluster.MethodsComprehensibility was achieved by transforming the interpretation problem into a classification problem: A sub-symbolic algorithm was used to estimate the importance of each pain measure for cluster assignment, followed by an item categorization technique to select the relevant variables. Subsequently, a symbolic algorithm as explainable artificial intelligence (XAI) provided understandable rules of cluster assignment. The approach was tested using 100-fold cross-validation.ResultsThe importance of the variables of the data set (6 pain-related characteristics of 82 healthy subjects) changed with the clustering scenarios. The highest median accuracy was achieved by sub-symbolic classifiers. A generalized post-hoc interpretation of clustering strategies of the model led to a loss of median accuracy. XAI models were able to interpret the cluster structure almost as correctly, but with a slight loss of accuracy.ConclusionsAssessing the variables importance in clustering is important for understanding any cluster structure. XAI models are able to provide a human-understandable interpretation of the cluster structure. Model selection must be adapted individually to the clustering problem. The advantage of comprehensibility comes at an expense of accuracy.© 2020 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFIC®.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.