• Eur J Pain · Feb 2021

    Nerve growth factor sensitizes nociceptors to C-fiber selective.

    • Mark Schnakenberg, Christian Thomas, Martin Schmelz, and Roman Rukwied.
    • Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
    • Eur J Pain. 2021 Feb 1; 25 (2): 385-397.

    BackgroundIntradermal injection of 1 µg nerve growth factor (NGF) causes sustained nociceptor sensitization. Slowly depolarizing electrical current preferentially activates C-nociceptors.MethodsWe explored the differential contribution of A-delta and C-nociceptors in NGF-sensitized skin using slowly depolarizing transcutaneous electrical current stimuli, CO2 laser heat, mechanical impact, and A-fibre compression block. In 14 healthy volunteers, pain rating was recorded on a numeric scale at days 1-14 after NGF treatment. Ratings during A-fibre conduction block were investigated at days 3 and 7 post-NGF.ResultsPain ratings to electrical, CO2 heat and mechanical impact stimuli were enhanced (>30%, p < .0005, ANOVA) at NGF-injection sites. Axon reflex erythema evoked by electrical stimulation was also larger at NGF-injection sites (p < .02, ANOVA). Diminution of pain during continuous (1 min) sinusoidal current stimulation at 4 Hz was less pronounced after NGF (p < .05, ANOVA). Pain ratings to electrical sinusoidal and mechanical impact stimuli during A-fibre conduction block were significantly elevated at the NGF sites compared to NaCl-treated skin (p < .05, ANOVA).ConclusionsNGF-induced sensitization of human skin to electrical and mechanical stimuli is primarily driven by C-nociceptors with little contribution from A-delta fibres. Less-pronounced accommodation during ongoing sinusoidal stimulation suggests that NGF could facilitate axonal spike generation and conduction in primary afferent nociceptors in humans. Further studies using this sinusoidal electrical stimulation profile to investigate patients with chronic inflammatory pain may allow localized assessment of skin C-nociceptors and their putative excitability changes under pathologic conditions.SignificanceThe application of novel slowly depolarizing electrical stimuli demonstrated a predominant C-nociceptor sensitization in NGF-treated skin. Increased pain ratings, larger axon reflex erythema and less accommodation of C-fibres to ongoing sinusoidal stimulation all indicated an enhanced nociceptor discharge after NGF. A-fibre conduction block had little effect on electrical and mechanical hyperalgesia skin in NGF-treated compared to NaCl-treated skin. This electrical stimulus profile may be applicable for patients with chronic inflammatory pain, allowing localized assessment of skin C-nociceptors and their putative excitability changes under pathologic conditions.© 2020 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFIC®.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…