• Journal of neurotrauma · Feb 2021

    Acute neural and proteostasis mRNA levels predict chronic locomotor recovery after contusive spinal cord injury.

    • Saraswat OhriSujataSKentucky Spinal Cord Injury Research Center and Departments of University of Louisville School of Medicine, Louisville, Kentucky, USA.Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA., Darlene A Burke, Kariena R Andres, Michal Hetman, and Scott R Whittemore.
    • Kentucky Spinal Cord Injury Research Center and Departments of University of Louisville School of Medicine, Louisville, Kentucky, USA.
    • J. Neurotrauma. 2021 Feb 1; 38 (3): 365-372.

    AbstractOne of the difficulties in identifying novel therapeutic strategies to manage central nervous system (CNS) trauma is the need for behavioral assays to assess chronic functional recovery. In vitro assays and/or acute behavioral assessments cannot accurately predict long-term functional outcome. Using data from 13 independent T9 moderate contusive spinal cord injury (SCI) studies, we asked whether the ratio of acute (24-72 h post-injury) changes in the levels of neuron-, oligodendrocyte-, astrocyte-specific and/or endoplasmic reticulum stress response (ERSR) messenger ribonucleic acids (mRNAs) could predict the extent of chronic functional recovery. Increased levels of neuron, oligodendrocyte, and astrocyte mRNAs all correlated with enhanced Basso Mouse Scale (BMS) scores. Reduced levels of the ERSR mRNAs Atf4 and Chop correlate with improved chronic locomotor function. Neither neural or ERSR mRNAs were predictive for chronic recovery across all behavioral changes. The ratio of oligodendrocyte/ERSR mRNAs, however, did predict "improved," "no change," or "worse" functional recovery. Neuronal/ERSR mRNA ratios predicted functional improvement, but could not distinguish between worse or no change outcomes. Astrocyte/ERSR mRNA ratios were not predictive. This approach can be used to confirm biological action of injected drugs in vivo and to optimize dose and therapeutic window. It may prove useful in cervical and lumbar SCI and in other traumatic CNS injuries such as traumatic brain injury and stroke, where prevention of neuronal loss is paramount to functional recovery. Although the current analysis was directed toward ERSR whose activity was targeted in all but one study, acute mRNA markers for other pathophysiological cascades may be as predictive of chronic recovery when those cascades are targeted for neuroprotection.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.