• Cardiology in the young · Jan 2018

    Multicenter Study Observational Study

    Impaired cerebral autoregulation and elevation in plasma glial fibrillary acidic protein level during cardiopulmonary bypass surgery for CHD.

    • Ronald B Easley, Bradley S Marino, Jacky Jennings, Amy E Cassedy, Kathleen K Kibler, Ken M Brady, Dean B Andropoulos, Marissa Brunetti, Charles W Hogue, Eugenie S Heitmiller, Jennifer K Lee, James Spaeth, and Allen D Everett.
    • 1Texas Children's Hospital,Houston,Texas,United Sates of America.
    • Cardiol Young. 2018 Jan 1; 28 (1): 55-65.

    BackgroundCerebrovascular reactivity monitoring has been used to identify the lower limit of pressure autoregulation in adult patients with brain injury. We hypothesise that impaired cerebrovascular reactivity and time spent below the lower limit of autoregulation during cardiopulmonary bypass will result in hypoperfusion injuries to the brain detectable by elevation in serum glial fibrillary acidic protein level.MethodsWe designed a multicentre observational pilot study combining concurrent cerebrovascular reactivity and biomarker monitoring during cardiopulmonary bypass. All children undergoing bypass for CHD were eligible. Autoregulation was monitored with the haemoglobin volume index, a moving correlation coefficient between the mean arterial blood pressure and the near-infrared spectroscopy-based trend of cerebral blood volume. Both haemoglobin volume index and glial fibrillary acidic protein data were analysed by phases of bypass. Each patient's autoregulation curve was analysed to identify the lower limit of autoregulation and optimal arterial blood pressure.ResultsA total of 57 children had autoregulation and biomarker data for all phases of bypass. The mean baseline haemoglobin volume index was 0.084. Haemoglobin volume index increased with lowering of pressure with 82% demonstrating a lower limit of autoregulation (41±9 mmHg), whereas 100% demonstrated optimal blood pressure (48±11 mmHg). There was a significant association between an individual's peak autoregulation and biomarker values (p=0.01).ConclusionsIndividual, dynamic non-invasive cerebrovascular reactivity monitoring demonstrated transient periods of impairment related to possible silent brain injury. The association between an impaired autoregulation burden and elevation in the serum brain biomarker may identify brain perfusion risk that could result in injury.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.