• Am J Manag Care · Oct 2020

    Machine intelligence for early targeted precision management and response to outbreaks of respiratory infections.

    • Tiange Zhan, Dev Goyal, John Guttag, Rudra Mehta, Zahoor Elahi, Zeeshan Syed, and Mohammed Saeed.
    • University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109. Email: msaeed@med.umich.edu.
    • Am J Manag Care. 2020 Oct 1; 26 (10): 445-448.

    ObjectivesTo evaluate the utility of machine learning (ML) for the management of Medicare beneficiaries at risk of severe respiratory infections in community and postacute settings by (1) identifying individuals in a community setting at risk of infections resulting in emergent hospitalization and (2) matching individuals in a postacute setting to skilled nursing facilities (SNFs) that are likely to reduce the risk of infections.Study DesignRetrospective analysis of claims from 2 million Medicare beneficiaries for 2017-2019.MethodsIn the first analysis, the rate of emergent hospitalization due to respiratory infections was measured among beneficiaries predicted by ML to be at highest risk and compared with the overall average for the population. In the second analysis, the rate of emergent hospitalization due to respiratory infections was compared between beneficiaries who went to an SNF with lower predicted risk of infections using ML and beneficiaries who did not.ResultsIn the community setting, beneficiaries predicted to be at highest risk had significantly increased rates of emergency department visits (13-fold) and hospitalizations (18-fold) due to respiratory infections. In the postacute setting, beneficiaries who received care at top-recommended SNFs had a relative reduction of 37% for emergent care and 36% for inpatient hospitalization due to respiratory infection.ConclusionsPrecision management through personalized and predictive ML offers the opportunity to reduce the burden of outbreaks of respiratory infections. In the community setting, ML can identify vulnerable subpopulations at highest risk of severe infections. In postacute settings, ML can inform patient choices by matching beneficiaries to SNFs likely to reduce future risk.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…